博碩士論文 943209003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.222.69.152
姓名 蔡俊璋(Chun-Chang Tsai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 不同溫度下微波輻射對矽中氫離子活化效應之研究
(The Activated Effects of Hydrogen Ions under Microwave Irradiation at Different Temperature Ambiance)
相關論文
★ 以多孔矽為基板的矽奈米線陣列結構製程研究★ 塑膠機殼內部表面處理對電磁波干擾防護研究
★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究
★ 石墨材料時變劣化微結構分析★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響
★ 可程式控制器機構設計之流程研究★ 伺服沖床運動曲線與金屬板材成型關聯性分析
★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究
★ 複合式類神經網路預測貨櫃船主機油耗★ 熱力微照射製作絕緣層矽晶材料之研究
★ 微波活化對被植入於矽中之氫離子之研究★ 矽/石英晶圓鍵合之研究
★ 奈米尺度薄膜轉移技術★ 光能切離矽薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在瞬息萬變快速演進的半導體工業中,絕緣層上矽材料(SOI,Silicon-on-Insulator)以它獨特的結構解決了一般使用矽塊材製作半導體元件所發生的漏電流、過熱等關鍵問題,將半導體產業又推向了下一個世代。近年來,NanoClub發展出熱力微波製程(Thermal Microwave Process)來製作SOI材料,以能避免異質材料間之熱應力問題且比一般單使用微波加熱更具效率及轉移後薄膜品質較佳的優點為號召,期能成為現今製作SOI材料的主流製程。
本研究即進一步深入探討其熱力微波中的溫度氣氛參數,比較在不同的溫度氣氛下施以微波輻射對矽中氫離子的活化激發效應。實驗結果發現,在高於室溫的溫度氣氛下施以微波照射較能激發矽中的氫離子,使之易於生成氫氣泡;隨著溫度氣氛的提高,其表面的氫氣泡個數、尺寸大小均隨之有增加的趨勢,可證明溫度氣氛越高越能活化矽中的氫離子,使之具有更多的動能聚合形成氫氣泡;且於170℃以上的溫度氣氛下施以微波照射,能大幅的提升表面氫氣泡的數量及尺寸。
摘要(英) In the fast-changing semiconductor industry, silicon on insulator (SOI) depending on its unique structure solves many crucial issues that devices fabricated by conventional bulk silicon processing usually have some problems such as current leakage and heat generation. Recently, NanoClub has developed a Thermal-Microwave (TM) process to make SOI materials so as to avoid the thermal stress between the two dissimilar materials and obtain higher efficiency and higher quality than pure microwave process.
In this study, the temperature parameter of the ambiance in TM process has been further discussed, which the effects of activated hydrogen ions excited by microwave irradiation in Si were compared with each other at different temperature ambiance. Hydrogen ions can be easy to be excited from Si and form hydrogen bubbles by microwave irradiation above room temperature ambiance, as indicated from experimental results. The numbers and sizes of hydrogen bubbles beneath the sample surface were increased by increasing the temperature of the ambiance. Besides, according to the above results, it could be proved that higher temperature ambiance excited more hydrogen ions in Si and then provided more kinetic energy for the coalescence of hydrogen bubbles. The numbers and sizes of the hydrogen bubbles could be greatly increased under microwave irradiation above 170℃ temperature ambiance.
關鍵字(中) ★ 熱力微波
★ 薄膜轉移
★ 絕緣層上矽材料
★ 微波加熱
★ 微波
★ 氫離子活化
關鍵字(英) ★ layer transfer
★ SOI
★ silicon on insulator
★ hydrogen ions activating
★ microwave heating
★ microwave
★ thermal microwave
論文目次 總目錄
中文摘要 I
英文摘要 II
誌謝 IV
總目錄 V
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 2
第二章 SOI薄膜轉移技術及機制 4
2.1 利用Smart-CutTM法製作SOI材料 4
2.2 氫在半導體矽晶圓中之現象 6
2.3 薄膜剝離機制 9
2.3.1 薄膜剝離機制概述 9
2.3.2 微裂縫成長動力學 10
第三章 微波理論 29
3.1 微波簡介 29
3.2 微波加熱原理 30
3.2.1 微波與材料間的作用 30
3.2.2 材料吸收微波的途徑 32
3.2.3 材料的介電性質 34
3.2.4 微波加熱法與傳統加熱法之比較 36
第四章 實驗方法與步驟 43
4.1 實驗流程 43
4.1.1 晶圓準備及清洗 43
4.1.2 離子佈植及晶圓切割 43
4.1.3 微波活化處理 44
4.1.4 表面影像分析 45
第五章 實驗結果與討論 52
5.1 不同溫度氣氛下微波輻射對矽中氫離子之活化作用 52
5.1.1 室溫氣氛下微波輻射對矽中氫離子的影響 52
5.1.2 110℃、130℃、150℃、170℃、190℃及210℃之溫度氣氛下微波輻射對矽中氫離子的影響 53
第六章 結論 62
參考文獻 64
參考文獻 〔1〕R. R. Schaller, “Moore`s law: past, present and future”, Spectrum, IEEE, Vol. 34, Issue 6, pp. 52-59, Jun 1997.
〔2〕G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator”, Journal of Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, May 2003.
〔3〕Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology, John Wiley, New York, 1999.
〔4〕M. Bruel, “Silicon on insulator material technology”, Electronics Letters, Vol. 31, Issue 14, pp. 1201-1202, Jul 1995.
〔5〕T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies”, Duke University, Ph.D. Dissertation, 1998.
〔6〕J. M. Osepchuk, “A History of Microwave Heating Applications”, Microwave Theory and Techniques, IEEE Transactions on, Vol. 32, Issue 9, pp. 1200-1224, Sep 1984.
〔7〕J.-T. Cheng, et al., “Thermal-microwave hybrid SOI materials technology”, Proceedings-Electrochemical Society, Vol. 2, Issue 19, pp. 414-423, May 2005.
〔8〕T. Höchbauer, “On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage”, Marburg University, Ph.D. Dissertation, 2001.
〔9〕C. H. Seager and D. S. Ginley, “Studies of the hydrogen passivation of silicon grain boundaries”, Journal of Applied Physics, Vol. 52, Issue 2, pp. 1050-1055, Feb 1981.
〔10〕D. S. Ginley and D. M. Haaland, “Observation of grain boundary hydrogen in polycrystalline silicon with Fourier transform infrared spectroscopy”, Applied Physics Letters, Vol. 39, Issue 3, pp. 271-273, Aug 1981.
〔11〕J. K. G. Panitz, D. J. Sharp and C. R. Hills, “Near-surface microstructural modifications in low energy hydrogen ion bombarded silicon”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 3, Issue 1, pp. 1-5, Jan 1985.
〔12〕N. M. Johnson, et al., “Defects in single-crystal silicon induced by hydrogenation”, Physical Review B, Vol. 35, Issue 8, pp. 4166-4169, Mar 1987.
〔13〕S. Romani and J. H. Evans, “Platelet defects in hydrogen implanted silicon”, Nuclear Instruments and Methods in Physics Research Section B, Vol. 44, Issue 3, pp. 313-317, Jan 1990.
〔14〕G. F. Cerofolini, et al., “Hydrogen-related complexes as the stressing species in high-fluence, hydrogen-implanted, single-crystal silicon”, Physical Review B, Vol. 46, Issue 4, pp. 2061-2070, Jul 1992.
〔15〕M. Gao, et al., “A transmission electron microscopy study of microstructural defects in proton implanted silicon”, Journal of Applied Physics, Vol. 80, Issue 8, pp. 4767-4769, Oct 1996.
〔16〕W. K. Chu, et al., “Distribution of irradiation damage in silicon bombarded with hydrogen”, Physical Review B, Vol. 16, Issue 9, pp. 3851-3859, Nov 1977.
〔17〕C. G. Van de Walle, et al., “Theory of hydrogen diffusion and reactions in crystalline silicon”, Physical Review B, Vol. 39, Issue 15, pp. 10791-10808, May 1989.
〔18〕K. J. Chang and D. J. Chadi, “Hydrogen bonding and diffusion in crystalline silicon”, Physical Review B, Vol. 40, Issue 17, pp. 11644-11653, Dec 1989.
〔19〕T. Hara, et al., “H+ implantation in Si for the void cut SOI manufacturing”, Ion Implantation Technology. Proceedings of the 11th International Conference on, pp. 45-48, Austin, TX, USA, Jun 1996.
〔20〕Bo Chen, “Mechanisms of layer-transfer related to silicon-on-insulator structures”, New Jersey Institute of Technology, Ph.D. Dissertation, May 2004.
〔21〕I. Radu, “Layer transfer of semiconductors and complex oxides by helium and/or hydrogen implantation and wafer bonding”, Martin Luther University, Ph.D. Dissertation, Nov 2003.
〔22〕C. M. Varma, “Hydrogen-implant induced exfoliation of silicon and other crystals”, Applied Physics Letters, Vol. 71, Issue 24, pp. 3519-3521, Dec 1997.
〔23〕L. Huang, “Layer transfer of semiconductor and insulator materials by wafer bonding and hydrogen implantation”, Duke University, Ph.D. Dissertation, Mar 1999.
〔24〕A. K. El-Senussi and J. P. H. Webber, “On the double cantilever beam technique for studying crack propagation”, Journal of Applied Physics, Vol. 56, Issue 4, pp. 885-889, Aug 1984.
〔25〕H. M. Kingston and L. B. Jassie, Introduction to Microwave Sample Preparation: Theory and Practice, American Chemical Society, Washington, D.C., 1988.
〔26〕D. Michael, P. Mingos and D. R. Baghurst, “Application of microwave dielectric heating effects to synthetic problems in chemistry”, Chemical Society Reviews, Vol. 20, Issue 1, pp. 1-47, 1991.
〔27〕D. E. Clark and W. H. Sutton, “Microwave Processing of Materials”, Annual Review of Materials Science, Vol. 26, pp. 299-331, Aug 1996.
〔28〕B. Krieger, R. D. Allen and D. W. Tredinnick, “Industrial microwave technology”, Annual Meeting of the Rubber Division of the American Chemical Society.
〔29〕http://rpaulsingh.com/teaching/LectureHandouts/microwave_handout.pdf
〔30〕曾信富,「微波加熱處理與材料特性分析」,國立清華大學,碩士論文,民國95年。
〔31〕高健玲,「微波加熱與微波萃取教學與實驗教材之設計」,國立高雄師範大學,碩士論文,民國91年。
〔32〕A. Bhaskar, et al., “Low-temperature crystallization of sol-gel-derived lead zirconate titanate thin films using 2.45 GHz microwaves”, Thin Solid Films, Vol. 515, Issue 5, pp. 2891-2896, Jan 2007.
〔33〕小川洋輝,崛池靖浩著,半導體潔淨技術,顏誠廷譯,普林斯頓國際有限公司,臺北縣,民國92年。
〔34〕G. A. Samara, “Temperature and pressure dependences of the dielectric constants of semiconductors”, Physical Review B, Vol. 27, Issue 6, pp. 3494-3505, Mar 1983.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2007-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明