博碩士論文 943209015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.239.56.184
姓名 鄭書安(Shu-an Cheng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
(The study of electrochemical hydrogenation/dehydrogenation and corrosion behavior of Mg2Ni1-xCux alloys in 6M KOH solution)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ 以電化學方法在鋅箔上製備氧化鋅奈米結構
★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用
★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究
★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質
★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)
★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性
★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究★ 銅鎳合金微結構之微電鍍研究
★ 以微電鍍法製備三維銅錫介金屬化合物微結構★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究採用恆溫揮發熔煉鑄造製程(Isothermal Evaporation Casting Process)專利合成的Mg2Ni1-xCux合金(x=0,0.2,0.4,0.6,0.8,1.0)為儲氫材料,研究其在6M 氫氧化鉀電解液中之液態電化學吸、放氫之行為;材料中添加Cu至Mg2Ni合金中取代Ni的目的,在於嘗試改善此合金的液態吸放氫性能。
在6M 氫氧化鉀電解液中,控制電位(本論文均以標準氫電位SHE表示)在-0.05V~-1.05V 範圍中,以循環伏安法(Cyclic Voltammmetry) 研究Mg2Ni1-x Cux合金之電化學吸、放氫行為,由CV圖譜中結果顯示: Mg2Ni 於- 0.8V 出現一特性氧化峰(推測為氫化物的氧化,可評估其放氫能力),而Mg2Ni1-x Cux合金則在- 0.7 V (推測為氫化鎂之氧化)與 - 0.4V(推測屬於Cu?CuO22-的氧化反應)處各出現一特性氧化峰。量測Mg2Ni1-x Cux合金在-0.7V(與- 0.8V附近)氧化峰之高度與並積分其面積值,顯示合金中以Mg2Ni0.6Cu0.4之面積最大,放氫能力最佳,釋氫量最大。圖譜中陰極區電流(還原)積分後之大小,會隨著合金中Cu成分之增加而降低,亦即:添加銅會降低合金的吸氫(還原氫)能力。若將CV實驗控制在較小電位範圍 (-0.5V~-1.05V)進行,不僅可避免- 0.4V(Cu氧化峰)之出現,合金在-0.7V處的電流較無衰退之趨勢。
以定電流(10mA/g)測試Mg2Ni1-xCux合金的放電實驗,量測其電壓(至- 0.10V結束)對時間之關係,結果顯示: 放電量大小依序為x= 0.4 > 0.2 > 0.6 > 0.8 > 1.0 > 0.0,同時在含Cu合金的放電曲線上 -0.4V~-0.5V處發現多出一平原區 (對應於CV圖譜- 0.4V處銅的氧化峰),屬於銅氧化之不可逆放電。若終止放電實驗於- 0.5V,則可減緩放電量隨放電週次增加而衰減之現象。此結果與循環伏安法的研究結果相符。
合金試片在充放電前後分別進行X光結晶繞射分析,結果發現:含Cu合金在充放電後,Mg2Ni (003)與(101)晶面繞射峰(2θ=20.1和20.8度)的強度大幅減少,顯示合金有不可逆的結構的變化(放氫能力衰退);純Mg2Ni之XRD則無此現象。
比較極化阻抗之量測結果,顯示Mg2Ni0.6Cu0.4較其他含銅合金之極化阻抗低(約低65 %),亦即反應活性增高約65 %。在定電位放電下量測合金中氫的擴散係數,結果得知:Mg2Ni0.6Cu0.4合金的擴散係數(7.11*10-10 cm2/s),比純Mg2Ni (3.54*10-10 cm2/s)增快約1倍。
摘要(英) The electrochemical hydrogenation/dehydrogenation of the Mg2Ni1-xCux alloys (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) in 6 M KOH solution has been investigated. Copper was added in the alloy, through a patent process named isothermal evaporation casting process, in an attempt to improve the hydrogenation capacity and the kinetics of hydrogenation/dehydrogenation.
Cyclic voltammmetry (CV) of the alloys in 6 M KOH solution was studied in -1.05V~-0.05V (All potentials reported with respect to standard hydrogen electrode, SHE) to estimate their capacity of hydrogenation/dehydrogenation. The CV curve of Mg2Ni revealed a simple characteristic oxidation peak at - 0.8V (supposedly due to oxidation of the hydride that is useful for estimation the capability of dehydrogenation). In contrast, the curve of Mg2Ni1-x Cux indicated an oxidation peak at - 0.7 V (perhaps arisen from oxidation of MgH2) with another one at - 0.4V (may be ascribed to the reaction Cu?CuO22-). The area of each peak could be estimated by integration and compared. The capability of dehydrogenation is proportional the area of the peak. Alloy Mg2Ni0.6Cu0.4 has the highest peak area to reveal the highest capability of dehydrogenation. The integration of the cathodic current loop on CV exhibits that the area decreases with increasing the copper content in the alloy. It implies that the addition of copper in the alloy decreases the capacity of hydrogenation. The enhancement on the dehydrogenation but diminishment on the hydrogenation may be due to alkaline dissolution of copper in the alloy. The performance of CV in a constraint range (i.e., -1.05V~ -0.5V) can significantly avoid the loss of hydrogenation capacity. This discharge at lower potential (i.e. -0.5V) prevents the occurrence of irreversible oxidation (i.e., -0.4 V) of copper in the alloy. Thus, there is no prominent depression on the discharging current at -0.7V.
The capacity of dehydrogenation was also measured by constant current discharging (at 10mA/g) of the alloys. The variation of voltage versus time was monitored. The electrical quantity discharged was estimated and it decreases in the order x = 0.4 > 0.2 > 0.6 > 0.8 > 1.0 > 0.0 Cu. There arises a plateau at -0.5V~-0.4V for the alloy containing Cu > 0.2 that is consistent with the result from CV (-0.4 V on CV responsible for irreversible oxidation of copper in the alloy). If the discharging measurement was terminated at -0.5V, the irreversible oxidation of copper could be avoided so that the current depression at -0.7 V becomes less significant. This result agrees with that from CV.
X-ray diffraction (XRD) patterns of the specimens prior to and post electrochemical hydrogenation/dehydrogenation were compared. There is no obvious change for the Mg2Ni but with a depression of the intensity at 2θ=20.1 and 20.8o, for Mg2Ni (003) and (101) in the Mg2Ni1-xCux alloys, revealed an irreversible change of the crystal in the dehydrogenation that is responsible for a decay of their capacity of dehydrogenation
The polarization resistance of the system was measured and compared for the alloys. The resistance is roughly 25 % lower for Mg2Ni0.6Cu0.4 than Mg2Ni. This infers an 25 %-enhancement on the kinetics. The diffusion coefficient of hydrogen in the alloy was determined under constant current discharging, the coefficient is one-time higher in Mg2Ni0.6Cu0.4 (7.11*10-10 cm2/s) than in Mg2Ni (3.54*10-10 cm2/s).
關鍵字(中) ★ 循環伏安法
★ Mg2Ni1-xCux
★ X光繞射
★ 線性極化
★ 儲氫合金
關鍵字(英) ★ Linear polarization
★ XRD
★ Cyclic Voltammmetry
★ Mg2Ni1-xCux
★ Hydrogen storage alloy
論文目次 總目錄
中文摘要
i
英文摘要 iii
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 xi
一、簡介與文獻回顧 1
1.1 儲氫合金種類簡介 1
1.2 Mg-Ni-Cu儲氫合金 2
1.3 儲氫合金吸放氫原理 3
1.4 儲氫合金之電化學吸、放氫特性 4
1.5 儲氫合金之腐蝕行為 7
1.6 研究目的與目標 7
二、實驗步驟與方法 9
2.1 製備Mg2Ni1-xCux合金碟型試片流程 9
2.2 Cyclic Voltammetry (CV)分析 10
2.3 充放電循環試驗 10
2.4 定電位擴散動力學量測 10
2.5 X光繞射分析(X-ray diffraction method ,XRD) 12
2.6 Energy Dispersive X-ray analysis (EDX)分析 12
三、實驗結果 13
3.1 合金初始XRD 13
3.2 Cyclic Voltammetry (CV) 13
3.3 定電流充放電循環 15
3.4 合金充放電前後XRD的變化 16
3.5 EDX半定量觀察試片表面成分變化 16
3.6 極化阻抗量測 17
3.7 定電位量測擴散係數 17
四、討論 19
4.1 Cu 添加量對Mg2Ni(1-x)Cux合金(x=0 ~1.0)在6M KOH
電解液中的電化學吸、放氫特性之影響 19
4.2 Cyclic Voltammetry (CV) 結構變化 19
4.3 Cu對Mg2Ni(1-x)Cux合金中的H擴散係數之影響 20
4.4. Mg2Ni1-xCux合金在6M KOH鹼性環境下的腐蝕行為 20
第五章 結論 22
第六章 未來展望 24
參考文獻 25
表目錄
表 1.1四種儲氫合金基本特性 31
表 2.1 Mg2Ni1-xCux合金預設值與分析值之成分分析 32
表 2.2 Mg2Ni1-xCux合金晶格常數及晶系 32
表 3.1 Mg2Ni1-xCux合金的開路電位 32
表 3.2 Mg2Ni1-xCux合金的CV曲線還原電量
及氧化峰面積(-0.7V) 33
表3.3 Mg2Ni1-xCux合金的4個循環放電量(mAh/g) 33
表3.4 Mg2Ni1-xCux合金(x=0.2~0.8)放電到-0.5V的
循環放電量維持率 34
表3.5 Mg2Ni合金在充放電循環前後的EDS元素分析結果 34
表3.6 Mg2Ni0.8Cu0.2合金在充放電循環前後的EDS元素分析
結果 34
表3.7 Mg2Ni0.6Cu0.4合金在充放電循環前後的EDS元素分析
結果 35
表3.8 Mg2Ni0.4Cu0.6合金在充放電循環前後的EDS元素分析
結果 35
表3.9 Mg2Ni0.2Cu0.8合金在充放電循環前後的EDS元素分析
結果 35
表3.10 Mg2Cu合金在充放電循環前後的EDS元素分析結果 36
圖目錄
圖 1.1 儲氫合金(a)吸氫(b)放氫機制 37
圖 1.2 Ni(OH)2電極添加CoO示意圖 38
圖 2.1 尚未製作成試片之Mg2Ni1-xCux合金粉末XRD圖譜 39
圖 2.2 實驗流程示意圖 40
圖 2.3 碟型試片製備流程 41
圖 2.4 實驗夾具設計示意圖 42
圖 2.5 電化學實驗裝置示意圖 43
圖 3.1 (a)Mg-Ni-Cu合金的XRD圖譜 44
(b)Mg2Ni與Mg2Cu的JCPDS標準圖譜 45
圖 3.2 Mg2Ni1-xCux合金的CV曲線圖
(a) x=0,0.4,1,(b) x=0.2,0.4,0.6,0.8 46
(c) Mg2Ni1-xCux合金的CV氧化峰放大圖 47
圖 3.3 Pourbaix diagram of Cu 48
圖 3.4 Mg2Ni1-xCux合金的4 cycle CV圖譜
(a) x=0,(b) x=0.2 49
(c) x=0.4,(d) x=0.6 50
(e) x=0.8,(f) x=1 51
圖 3.5 Mg2Ni1-xCux合金(x=0.2~0.8)縮小範圍的CV圖譜
(a) x=0.2 ,(b) x=0.4 52
(c) x=0.6 ,(d) x=0.8 53
圖 3.6 x=0 (Mg2Ni)的定電流充放電曲線(a)充電,(b)放電 54
圖 3.7 x=0.2 (Mg2Ni0.8Cu0.2)的定電流充放電曲線(a)充電,(b)放電 55
圖 3.8 x=0.4 (Mg2Ni0.6Cu0.4)的定電流充放電曲線(a)充電,(b)放電 56
圖 3.9 x=0.6 (Mg2Ni0.4Cu0.6)的定電流充放電曲線(a)充電,(b)放電 57
圖3.10 x=0.8 (Mg2Ni0.2Cu0.8)的定電流充放電曲線(a)充電,(b) 放電 58
圖3.11 x=1 (Mg2Cu)的定電流充放電曲線(a)充電,(b)放電 59
圖3.12 Mg2Ni1-xCux合金放電量隨成份及循環次數的變化 60
圖3.13 Mg2Ni1-xCux合金循環放電電量剩餘比例與截止電壓之關係
(a) x=0.2,(b) x=0.4 61
(c) x=0.6,(d) x=0.8 62
圖 3.14 x=0 (Mg2Ni)合金充放電前後的XRD圖譜 63
圖 3.15 x=0.2 (Mg2Ni0.8Cu0.2)合金充放電前後的XRD圖譜 63
圖 3.16 x=0.4 (Mg2Ni0.6Cu0.4)合金充放電前後的XRD圖譜 64
圖 3.17 x=0.6 (Mg2Ni0.4Cu0.6)合金充放電前後的XRD圖 64
圖 3.18 x=0.8 (Mg2Ni0.2Cu0.8)合金充放電前後的XRD圖譜 65
圖 3.19 x=1 (Mg2Cu)合金充放電前後的XRD圖譜 65
圖 3.20 Mg2Ni1-xCux合金的線性極化曲線 66
圖 3.21 Mg2Ni1-xCux合金的極化阻抗隨成份變化圖 66
圖 3.22 Mg2Ni1-xCux合金的定電位放電曲線圖 67
圖3.23 Mg2Ni1-xCux合金的氫擴散係數隨成分的變化 67
圖4.1 Mg2Ni1-xCux合金的定電流放電第一循環曲線圖 68
圖4.2 Mg2Ni0.8Cu0.2合金的CV(~-0.05V)第一循環氧化峰fitting結果 68
圖4.3 Mg2Ni0.8Cu0.2合金的CV(~-0.05V)第二循環氧化峰fitting結果 69
圖4.4 Mg2Ni0.6Cu0.4合金的CV(~-0.05V)第一循環氧化峰fitting結果 69
圖4.5 Mg2Ni0.6Cu0.4合金的CV(~-0.05V)第二循環氧化峰fitting結果 70
圖4.6 Mg2Ni0.4Cu0.6合金的CV(~-0.05V)第一循環氧化峰fitting結果 70
圖4.7 Mg2Ni0.4Cu0.6合金的CV(~-0.05V)第二循環氧化峰fitting結果 71
圖4.8 Mg2Ni0.8Cu0.2合金的CV(~-0.05V)第一循環氧化峰fitting結果 71
圖4.9 Mg2Ni0.8Cu0.2合金的CV(~-0.05V)第二循環氧化峰fitting結果 72
圖4.10 Mg2Ni0.8Cu0.2合金的CV(~-0.5V)第一循環氧化峰fitting結果 72
圖4.11 Mg2Ni0.8Cu0.2合金的CV(~-0.5V)第二循環氧化峰fitting結果 73
圖4.12 Mg2Ni0.6Cu0.4合金的CV(~-0.5V)第一循環氧化峰fitting結果 73
圖4.13 Mg2Ni0.6Cu0.4合金的CV(~-0.5V)第二循環氧化峰fitting結果 74
圖4.14 Mg2Ni0.4Cu0.6合金的CV(~-0.5V)第一循環氧化峰fitting結果 74
圖4.15 Mg2Ni0.4Cu0.6合金的CV(~-0.5V)第二循環氧化峰fitting結果 75
圖4.16 Mg2Ni0.4Cu0.6合金的CV(~-0.5V)第一循環氧化峰fitting結果 75
圖4.17 Mg2Ni0.4Cu0.6合金的CV(~-0.5V)第二循環氧化峰fitting結果 76
參考文獻 [Abe1] Takayuki Abe, Sachio Inoue, Daobin Mu, Yuji Hatano, Kuniaki Watanabe, “Electrochemical studies of the effect of surface modification of amorphous MgNi electrodes by carbon or Ni”, Journal of Alloys and Compounds, 349,2003, p.279–283
[Ana1] Anaba Anani, Arnaldo Visintin, Konstantin Petrov, Supramaniam Srinivasant, “Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, Journal of Power Sources, Vol.47, 1994, p.261-275.
[Bal1] J.Balej, “Determination of the oxygen and hydrogen overvoltage in concentrated alkali hydroxide solutions”, International Journal of Hydrogen Energy, Vol.10 , 1985, No.6, p.365.
[Bra1] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley, New
York, 1980, p. 133.
[Cui1] N. Cui, J.L. Luo, K.T. Chuang,“Nickel-metal hydride (Ni-MH) battery using Mg2Ni-type hydrogen storage alloy”, Journal of Alloys and Compounds, Vol.302, 2000, p.218-226.
[Cui2] N. Cui, J.L. Luo, K.T. Chuang. “Study of hydrogen diffusion in a- and b-phase hydrides of Mg2Ni alloy by microelectrode technique”, Journal of Electroanalytical Chemistry, Vol.503, 2001, p.92–98.
[Dav1] Elena David, “An overview of advanced materials for hydrogen storage”, Journal of Materials Processing Technology, Vol.162-163, 2005, p.169-177.
[Con1] B.E. Conway, J. Wojtowicz, J. Electroanal. Chem. 326 (1992)
277
[Cra1] J. Crank, The Mathematics of Diffusion, 2nd edn., Claredon
Press, Oxford, 1975, p. 91.
[Dar1] J.P. Darnaudery, B. Darriet, M. Pezat, “The Mg2Ni0.75M0.25 alloys (M=3d element): Their application to hydrogen storage”, International Journal of Hydrogen Energy, Vol.8, No.9,1983,p.705-708.
[Dar2] J.P. Darnaudery, M. Pezat, B. Darriet, “Influence de la substitution du cuivre au nickel dans Mg2Ni sur le stockage de L’hydrogene”, Journal 0f the Less-Common Metals, Vol.92,1983, p.199-205.
[Fen1] F. Feng, M. Geng, and D. O. Northwood, “Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review”, International Journal of Hydrogen Energy, Vol. 26, 2001, p.725-734.
[Fla1] T. B. Flanagan and W. A. Oates, Hydrogen in intermetallic
compounds I, in: L. Schlapbach (Ed.), Topics in Applied Physics,
Vol. 63, Springer Verlag, New York, 1988, p.49.
[Geb1] A. Gebert, B. Khorkounov, U. Wolff, Ch. Mickel, M. Uhlemann, L. Schultz, “Stability of rapidly quenched and hydrogenated Mg–Ni–Y and Mg–Cu–Y alloys in extreme alkaline medium”, Journal of Alloys and Compounds, Vol.419, 2006, p.319-327
[Gra1] T. Graham, “On the Relation of Hydrogen to Palladium”, Journal of the Franklin Institute, Vol.87, 1869,p.256-266.
[Har1] T. Haraki, N. Inomata, and H. Uchida, “Hydrogen desorption kinetics of hydrides of LaNi4.5Al0.5, LaNi4.5Mn0.5 and LaNi2.5Co2.5”, Journal of Alloys and Compounds, Vol. 293-295, 1999, p.407.
[Hei1] Jussi M. Heikone, Harry J. Ploeh, and R. E. White,“The Effect of Particle Size on the Discharge Performance of a Nickel-Metal Hydride Cell”, Journal of the Electrochemical Society, Vol. 145, 1998, p.1840-1848.
[Hon1] K. Hong,“The development of hydrogen storage electrode alloys for nickel hydride batteries”, Journal of Power Sources, Vol. 96, 2001, p.85-89.
[Hu1] W. K. Hu, D. M. Kim, K. J. Jang, and J. Y. Lee, “Effect of annealing treatment on electrochemical properties of Mm-based hydrogen storage alloys for Ni/MH batteries” , Journal of Alloys and Compounds, Vol. 270, 1998, p.255.
[Iwa1] C. Iwakura, T. Oura, H. Inoue, M. Matsuoka, and Y. Yamamoto, “Effect of alloy composition on hydrogen diffusion in the AB5-type hydrogen storage alloys”,Journal of Electroanalytical Chemistry, Vol. 398, 1995, p.37.
[Jan1] E. Jankowska, M. Jurczyk, “Electrochemical properties of sealed Ni–MH batteries using nanocrystalline TiFe-type anodes”, Journal of Alloys and Compounds, Vol.372, 2004, L9-L12.
[Jia1] 江承恩,” Mg2(Cu1-xNix)儲氫合金結構與吸放氫特性之研究”,國立中央大學碩士論文,2007.
[Kui1] F. A. Kuijpers and H. H. van Mal, “Sorption hysteresis in the LaNi5-H and SmCo5-H systems, ”Journal of the Less-Common Metals, Vol.23, 1971, p.395.
[Lia1] 廖世傑,“儲氫技術及應用簡介”, 工業材料, Vol.190, 2002, p.139.
[Liu1] Weihong Liu , Yongquan Lei, Dalin Sun, Jing Wu , Qidong Wang, “A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy”, Jouma! of Power Sources, Vol. 58,1996, p.243-247.
[Mel1] F. Meli, T. Sakai, A. Züttle, and L. Schlapbach, “Passivation behavior of AB5-type hydrogen storage alloys for battery electrode application” Journal of Alloys and Compounds, Vol. 221, 1995, p.284-290.
[Osh1]M. Oshitani, H. Yufu, K. Takashima, S. Tsuji, and Y. Matsumaru, “Development of a Pasted Nickel Electrode with High Active Material Utilization”, Journal of the Electrochemical Society, Vol. 136, 1989, p.1590-1593.
[Par1] H. J. Park, N. H. Goo, K. S. Lee, “In Situ Pd Deposition on Mg2Ni Electrodes for Ni/MH Secondary Batteries during Charge Cycles”, Journal of the Electrochemical Society, Vol.150,2003, p.A1328-A1332.
[Rat1] B. V. Ratnakumart, C. Witbam, R. C. Bowman, Jr., A. Hightower, and B. Fultz, “Electrochemical Studies on LaNi5-xSnx Metal Hydride Alloys”, Journal of the Electrochemical Society, Vol. 143, 1996, p.2578-2584.
[Rat2] B. V. Ratnakumar, C. Witham, B. Fultz, and G. Halpert, “Electrochemical Evaluation of La-Ni-Sn Metal Hydride Alloys” Journal of the Electrochemical Society, Vol.141, 1994, L89-L91.
[Rei1] J.J. Reilly, R.H. Wiswall, “The reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4”, Inorganic Chemistry, Vol.7, 1968, p.2254.
[Rei2] J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium Hydride”, Inorganic Chemistry, Vol.13, 1974, p.218.
[Rei3] J.J. Reilly, R.H. Wiswall, “The Reaction of Hydrogen with Alloys of Magnesium and Cpper”, Inorganic Chemistry, Vol.6, 1967, p.2220-2223.
[Ron1] C. Rongeat, M.-H. Grosjean, S. Ruggeri, M. Dehmas,
S. Bourlot, S. Marcotte, L. Roue, “Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries”, J. Power Sources, Vol.158, 2006. p.747-753.
[San1] Gary Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds, Vol.293-295, 1999, pp.877–888.
[Sei1] A. Seiler, L. Schlapbach, Th. Von Waldkirch, D. Shaltiel F. Stucki” Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu” Journal of the Less-Common Metals, Vol.73, 1980, p.193-199.
[Toy1] Toyoto Sato, Helen Blomqvist, Dag Noreus, “Attempts to improve Mg2Ni hydrogen storage by aluminium addition”, Journal of Alloys and Compounds, Vol.356–357, 2003, p.494–496.
[Tsu1] Y. Tsushioa, H. Enokib, E. Akibab, “Energy distribution of hydrogen sites for MgNi0.86M10.03(M1=Cr,Fe,Co,Mn)alloys desorbing hydrogen at low temperature”, Journal of Alloys and Compounds, Vol.285, 1999, p.298–301.
[Vuc1] J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Research Reports, Vol.25, 1970, p.133.
[Wan1] L.B. Wang, J.B. Wang, H.T. Yuan, Y.J. Wang, Q.D. Li, ” An electro-chemical investigation of Mg1−xAlxNi (0 ≤ x ≤ 0.6) hydrogen storage alloys”, Journal of Alloys and Compounds, Vol. 385,2004, p.304–308.
[Wil1] J. J. G. Willems, Philips Journal of Research 39, 1984.
[Yua1] Huatang Yuan, Qiudi Li, Henan Song, Yijing Wang, Jingwang Liu, “Electrochemical characteristics of Mg2Ni-type alloys prepared by mechanical alloying”, Journal of Alloys and Compounds, Vol. 353, 2003, p.322-326.
[Zho1] G. Zhong, B.N. Popov, R.E. White, Journal of Electrochemical Society Vol.142, 1995, p.2695.
[Zhu1] W. H. Zhu, D. J. Zhang, J. J. Ke, “ ELECTROCHEMICAL CHARACTERISTICS OF ENCAPSULATED METALHYDRIDE-ALLOY ELECTRODES”, Materials Research Bulletin, Vol. 31, No. 6, 1996, pp. 673-682.
[Zut1] A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, “LiBH4 a new hydrogen storage Material”, Journal of Power Sources, Vol.118, 2003, p.1-7
指導教授 林景崎(Jing-chie Lin) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明