博碩士論文 943402016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.238.189.171
姓名 陳昌義(Chang-Yi Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 住宅補貼申請戶特徵對審查合格影響之研究
(Residential subsidies in feature of applicants for influence of review qualifiers by using SIP clustering method)
相關論文
★ 預鑄專案成本估算策略之研究★ 新建工程建造執照查核缺失要項之探討--以台北市為例
★ 灰關聯分析探討古蹟與歷史建築再利用之研究★ 營造工地管理人資量化與預測
★ 公共建設專案現金管理與控制之研究★ 營建業ERP整合PDA模型之研究
★ 水庫營運效益評估之研究-以石門水庫為例★ 工程顧問公司專案管理組織績效與型態之研究
★ 政府採購決標滿意度評估模型之初步研究★ 以承包商觀點研析價值工程於鐵路地下化工程之個案研究
★ 高壓噴射灌漿工法應用於粉質黏土與細砂互層地盤之研究★ 從營造工程施工風險認知觀點探討臺灣地區營造綜合保險對營造業經營發展之影響
★ 工程變更設計對工程總管理費影響之研究-以建築工程為例★ 透天住宅成本估算模式之研究
★ 建築與水電施工介面查核管理之探討★ 切削樁施作順序最佳化模式之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現有之住宅文化,受台灣近代發展歷史之波折而有很深的影響,其中最明顯的觀念即是”住者有其屋”。受此思考影響,即使房價自1987年後持續上漲,住宅自有率仍持續上升;但在此同時,相較於平均收入房價已超出合理之範圍,因此低收入戶之住宅自有率呈現負成長。也因如此,在無法強制介入住宅之自由市場或快速改善狀況的前下,住宅補貼即成為照顧弱勢族群不可或缺的政策。
政府原先按照辦理職業別、身分別給予各項政策性房屋貸款措施不同額度與利率,且同質之政策性房屋貸款措施分散在數個部會各自辦理,造成住宅資源及人力之有效利用之效率折減。行政院經濟建設委員會於94年8月3日提出:「有關各部會以職業身分別辦理之住宅補貼計畫,自95年度起不再新增,94年度以前已核定之各項住宅補貼措施,仍繼續執行至結束,未來住宅補貼業務統一由內政部辦理。」。
此補貼方案自開辦以來,每年申請人數皆逾萬人,為一龐大之資料庫。除利用傳統統計方式分析基本特性外,更因資料數量豐富,適用於資料探勘之分析方法,因此本研究即利用資料探勘中之群啟發演算法對住宅補貼申請資料進行分群,使其資料自行群聚,顯現各群組所特有之性質,進行人為解釋,提供後續相關政策修改與執行之參考。
研究結果可看出住宅補貼審查之最大重點為經濟狀況,受補貼者為經濟弱勢,但不一定為弱勢族群:即代表,透過行之有年的眾多補助與福利協助後,弱勢族群已漸漸不完全等於經濟弱勢族群。最後,研究成果可提供社會局、內政部營建署等住宅補貼相關機關,作為後續住宅政策調整研擬之參考。
摘要(英) The existing housing situation in Taiwan –The history, development and modern changes of Taiwan’s economy have had a strong impact on Taiwan’s housing situation effecting the idea of home ownership. Although prices of homes have risen steadily since 1987, home sales have also continued to increase. At the same time average family income has risen to levels beyond the scope of reasonable pricing; and therefore home ownership rates for lower-income households has dropped. This is also the reason why a ‘free market’ system cannot be enforced during these periods of rapid expansion, so the establishment of housing policies to support the disadvantaged is essential.
In accordance with the original structure, various policy measures were established based on occupation and the background of the applicant, with homogeneous interest rates and policy measures. These were dispersed and handled separately by several ministries, resulting in an efficient and effective use of resources and manpower; but not completely efficient. On 3 August 2006, the Council for Economic Affairs proposed that ‘Relative departments’ would conduct a professional review of the Residential Subsidy Program, since the program was based on subsidies that were approved before the year of 2005; and in the future would operate at the same level, and will be managed by the Ministry of the Interior.

Since the inception of the subsidy program, the number of applicants exceeds 10,000 annually. This is a sizeable database. In addition to using traditional, statistical methods to analyze the basics, and also because of the vast amount of data for analyzing the results of the data mining, this study is in the use of data-mining algorithms - inspired by the group to apply for housing subsidy. Data for ‘clustering’ by individual groups reveals the unique nature of each group, and provides follow-up for operational and policy changes to each related reference.

In its broadest scope, results can be realized regarding the economic situation of housing subsidies in a weak economy; but not necessarily aimed at ‘vulnerable’ groups. Within the program, assistance through a number of grants and benefits has existed for years without equality necessarily being directed to the economically disadvantaged groups. Finally, this research can provide data for the establishment of social benefits such as housing subsidies to the relevant authorities of the Ministry of the Interior to assist in the development of housing policy adjustments.
關鍵字(中) ★ 住宅補貼
★ 資料探勘
★ 群啟發
★ 分群
★ 群聚
關鍵字(英) ★ residential subsidies
★ data mining
★ the group inspired
★ clustering
★ swarm
論文目次 第壹章、 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究流程 3
1.5 研究限制 4
第貳章、 文獻回顧 6
2.1 住宅補貼政策 6
2.2 資料探勘 30
第參章、研究方法與資料處理 44
3.1 研究方法 44
3.2 資料取得與前置處理 45
第肆章、 研究成果 50
4.1 分群結果 50
4.2 各群聚回歸分析結果與比較 50
第伍章、 結論 62
5.1 結論與貢獻 62
5.2 後續研究建議 63
參考文獻 64
附錄一、各級縣市政府健保費補助之對象與內容 70
附錄二、第2群分群結果 76
參考文獻 中文部分:
1. 內政部(2005),整體住宅政策。
2. 內政部(2007),整體住宅政策實施方案。
3. 內政部(2007),住宅法(草案)。
4. 內政部(2007),整合住宅補貼資源實施方案。
5. 內政部(2009),住宅補貼作業規定。
6. 世新大學、內政部營建署(2006),中華民國95年台閩地區住宅狀況調查。
7. 王珮紋 (2012), 利用資料探勘技術建立現金預測模式 :決策樹方法之應用, 會計與資訊科技研究所, 嘉義縣, 國立中正大學, 碩士論文 。
8. 王景煌 (2006), 以資料探勘技術建構企業危機預警模式 -結合財務與非財務及智慧資本指標, 資訊管理研究所, 桃園縣, 中原大學。
9. 行政院經濟建設委員會(2002),輔購住宅與租金補貼政策之比較研究。
10. 行政院主計處(2001),八九年戶口及住宅普查結果提要。
11. 行政院經濟建設委員會(1990),住宅補助方案之評估。
12. 行政院經濟建設委員會(2003),影響所得分配之因素分析及改善對策。
13. 行政院經濟建設委員會(2007),台灣社會經濟環境變遷對未來住宅需求之預測研究。
14. 行政院經濟建設委員會(2008),中華民國台灣97 年至145 年人口推計。
15. 朱曼如 (2005), 運用數位法則及資料探勘技術建構審計選案調查模型之研究, 會計所, 嘉義縣, 國立中正大學, 碩士論文。
16. 汪明生、張寧(2004),公共事務管理使用分析方法。
17. Mark H, Moore 著,汪明生等譯(2005),Creating Public Value-Strategic Management in Government,創造公共價值-政府的策略管理,高雄市,中山大學公共事務管理研究所。
18. 汪明生(2006),公共事務管理研究方法,台北市,五南書局。
19. 余謝輝 (2010), 時間序列前處理與樣式探勘技術, 資訊工程學系碩博士班, 台南市, 國立成功大學, 博士論文。
20. 吳瓊恩、張秋杏、張世杰等譯(1993),公共行政的行動理論,台北市,五南書局。
21. 林子傑 (2006), 應用遺傳基因演算法技術於適應性叢集效度指標之研究, 電子與資訊工程研究所碩士班, 高雄市, 國立高雄應用科技大學, 碩士論文。
22. 林文星 (2011), 應用模糊集合理論於次序性支持向量機, 資訊管理系(所), 屏東縣, 國立屏東商業技術學院, 碩士論文。
23. 邱俊傑 (2011), CUDT: 以CUDA為基礎之決策樹演算法, 資訊科學與工程研究所, 新竹市, 國立交通大學, 碩士論文。
24. 邱健倫 (2011), 利用模糊理論與支持向量機於水質監測系統之研究, 資訊學系, 宜蘭縣, 佛光大學, 碩士論文。
25. 范姜光劭 (2002), 類神經網路應用於系統判別及適應控制之研究, 機械與輪機工程學系, 基隆市, 國立海洋大學, 碩士論文。
26. 林祖嘉 and 馬毓駿 (2007). "特徵方程式大量估價法在台灣不動產市場之應用." 住宅學報: 1-22.
27. 施威宏 (2009), 結合分群法和關聯性法則之資料探勘-以104家教網為例, 資訊工程學系, 彰化縣, 國立彰化師範大學, 碩士論文。
28. 施登瓊 (2006), 快速直覺式分群法:資料探勘中隸屬於分割式的一個新的資料分群演算法之分析與實作, 資訊管理系, 屏東縣, 屏東科技大學, 碩士論文。
29. 段建帆 (2005), 支援向量機之最佳化參數與屬性篩選之分散式資料探勘系統—以粒子群最佳化演算法為基礎, 資訊管理學系碩士班, 新北市, 華梵大學, 碩士論文。
30. 施奉馥 (2011). 地政資料庫之資料探勘研究-以土地分區與土地異動原因關係為例. 資訊管理研究所. 雲林縣, 虎尾科技大學. 碩士: 69.
31. 孫震(2001),李國鼎先生與群我運動,聯合報,第15 版。
32. 高克孝(2006),從PAM 架構探討高雄市警務機關在職教育訓練變革之研究。
33. 財團法人國土規劃及不動產資訊中心、內政部營建署(2009),97 年住宅資訊統計年報。
34. 財團法人國土規劃及不動產資訊中心(2007),台灣的房價家戶所得比合理嗎?
35. 涂靜郁 (2008), 以資料探勘技術進行課程分群與學習成效預測之研究, 資訊管理系碩士班, 雲林縣, 雲林科技大學, 碩士論文。
36. 陳麗春(2008),住宅政策之回顧與前瞻,社區發展季刊,121 期,p4-13。
37. 陳杰(2009),城市居民住房解決方案-理論與國際經驗,上海市,上海財經大學出版社。
38. 黃乃蓮(2004),對台灣稅務機關推動ISO-9002 政策之實證研究-V,C,S,策略管理架構、公共事務管理整合架構與判斷分析架構,高雄市,中山大學公共事務管理研究所碩士論文。
39. 張金鶚、行政院經濟建設委員會(2003),88~91 年振興房地產措施實施成效之評估。
40. 張雅惠(2008),住宅租金補貼政策之初探,土地問題研究季刊,第七卷,第三期。
41. 張世賢(2007),公共政策分析,台北市,五南書局。
42. 華昌宜(1991),台灣的住宅問題與其認知,台北市,住宅政策與法令研討會。
43. 華昌宜(1994),台灣應有的住宅目標,住宅學報,第二期,p133-134。
44. 華昌宜、王鴻楷、林祖嘉、吳森田、陳小紅、陳亮全、張金鶚、楊重信、薛立敏(1996),台北市住宅政策總體檢問題與建議,住宅學報,第四期,p89-103。
45. 曾志超、尤元奎(2003),台灣社會貧富差距日益擴大之省思,國家政策論壇季刊,冬季號,2009。
46. 趙于翔 (2007). 以群體智慧為基礎的最佳化演算法及其應用. 資訊工程研究所. 桃園縣, 國立中央大學. 博士: 144.
47. 趙志運 (2001). 以自我組織特徵映射圖為基礎之類神經模糊系統. 電機工程學系. 新北市, 淡江大學. 碩士: 59.
48. 鐘晟航 (2008), 以資料間距為基礎搭配矩形分割的非監督式聚類分割法, 電機工程系, 台北市, 國立臺灣科技大學, 碩士論文。
49. 蘇軾詠 (2004), 結合群體智慧與自我組織映射圖的資料視覺化研究, 資訊工程研究所, 桃園縣, 國立中央大學, 碩士論文。
英文部分:
50. Anderson, N.H.(1996).A Functional Theory of Cognition.Mahwah:LawrenceErlbaum Associates, New Jersey.
51. Abe, H., et al. (2007). Developing an integrated time-series data mining environment for medical data mining. 17th IEEE International Conference on Data Mining Workshops, ICDM Workshops 2007, October 28, 2007 - October 31, 2007, Omaha, NE, United states, Institute of Electrical and Electronics Engineers Inc.
52. Aouiche, K. and J. Darmont (2009). "Data mining-based materialized view and index selection in data warehouses." Journal of Intelligent Information Systems 33(1): 65-93.
53. Coase, R.H.(1960).The Problem of Social Coast.Journal of Law andEconomics, No.3, p1-44.
54. Chen, C.-H., et al. (2012). "Fuzzy data mining for time-series data." Applied Soft Computing Journal 12(1): 536-542.
55. Dunn, W.N.(1994).Public Policy Analysis-An Introduction.2nd ed.Prentice Hall, Inc. p89.
56. Fayyad, U., et al. (1996). "The KDD process for extracting useful knowledge from volumes of data." Commun. ACM 39(11): 27-34.
57. Fraser, S. J., et al. (2006). Data mining mining data - Ordered vector quantisation and examples of its application to mine geotechnical data sets. 6th International Mining Geology Conference, Rising to the Challenge, August 21, 2006 - August 23, 2006, Darwin, NT, Australia, Australasian Institute of Mining and Metallurgy.
58. Fu, T.-C. (2011). "A review on time series data mining." Engineering Applications of Artificial Intelligence 24(1): 164-181.
59. Inglehart, R.(1990).Culture Shift Advanced Industrial Society.NewJersey:Princeton University Press,p335、369-370.
60. Ju, C.-H. and F.-P. Guo (2010). "Distributed data mining model based on Support Vector Machines." Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice 30(10): 1855-1863.
61. Khademi Zare, H. and M. B. Fakhrzad (2011). "Solving flexible flow-shop problem with a hybrid genetic algorithm and data mining: A fuzzy approach." Expert Systems with Applications 38(6): 7609-7615.
62. Moore, M.H.(1995).Creating Public Value-Strategic Management in Government.London:Harvard University Press.
63. Moore, M.H. & Khagram,S.(2004).On creating public value-what business might learn from government about strategic management(p3).A working paper of the Corporate Social Responsibility Initiative.
64. Maelainin, S. A. and A. Bensaid (1998). "Fuzzy data mining query language." International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES 1: 335-340.
65. Yin, Y., et al. (2011). "Theory and techniques of data mining in CGF behavior modeling." 1-15.
66. Zhang, Y., et al. (2006). "Data mining system for drilling mechanical failure diagnosis based on neural network." Shiyou Xuebao/Acta Petrolei Sinica 27(1): 111-113.
指導教授 陳介豪(Chen, Jieh-Haur) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明