博碩士論文 943403013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.235.191.87
姓名 范智文(Zhi-wen Fan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用電化學加工製作微電極和微孔之研究與分析
(The Analysis and Investigation on the Micro-electrode and Micro-hole Fabrication by Electrochemical Machining)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
在眾多傳統加工中,電化學微細加工(EMM)又稱微電解加工,屬於特種加工的一種。其優點是可以加工任何金屬材料,並不受其硬度與強度的影響;且刀具電極不損耗,工件表面不含殘留應力,加工重複性較放電加工高,但其缺點在於微加工精度不高故本文針對以電化學加工法製作微電極和孔加工精度進行探討。
微電極在非傳統加工中應用層面廣,但微電極的製作多半是由線放電研磨和雷射加工所製作,其成本花費很高且製作效率低,加上二者皆是採熱加工容易殘留應力,故本研究利用電拋光方式分別探討在直流和脈衝電源供應器下,其加工參數對於微電極製作之外型和尺寸的影響並搭配旋轉系統增加質傳效應。經由實驗發現到低電壓、高電解液濃度、加上合適的轉速,可製作出小於100 μm之微電極,且發現到加工之微電極轉速對於電極外型有很大的影響性。在搭配脈衝電源供應下製作微電極其以線性遞減操作電壓和加工能率的方式,可成功的製作出刃長為2 mm、3 mm、4 mm,電極直徑為100 μm的圓柱狀微電極,也利用此微電極進行深孔加工。
在微電化學深孔加工中因為電極細小,不易使用中空管刀具進行排屑,故本研究採用旋轉刀具,改善電解液流動問題,且配合脈衝式直流電源,提供有規律的間歇供電進行間歇加工,以改善成品精度和增加孔深寬比。經由實驗可發現,在刀具轉速越高其加工深度可越深但高於某一轉速後其影響性降低,在使用50 μm的陰極刀具,且配合1000 RPM下其加工深度可達1000 μm(深寬比約1 : 9),過切量為33.35 μm。而在極短脈衝電化學加工經由實驗發現脈衝頻率和過切關係不為線性以及氫氣泡對於加工的影響很高,在單一脈衝放電時間為30 ns下其可製作出深度為300 μm,孔過切量為13.75 μm的微孔。
摘要(英) In numerous micromachining, electrochemical micro-machining (EMM) also called the electrolytic micro-machining that belong to the non conventional machining. It has more advantages such as any metal material regardless of its hardness can be machined, the cathode tool would not break in the machining process, the work piece after machining will not have any residual stress remained on its surface, the machining reproducibility was high than electro discharge machining. Due to the EMM that disadvantage was the low machining precision. In this paper we discussion the working parameters of EMM that how to effect the machining precision on the manufacture the micro-electrode and hole drilling.
The mircro-electrode has high potential application in non-conventional machining, because the micro-electrode is very thin, generally they are fabricated by micro-electro discharge and laser machining. However, the corresponding equipments are very expensive and their machining efficient is very low. In this reseaech, we applied in the form of electrochemical polish to manufacture the micro-electrode. Under using the DC and pulsed voltage power supply we disscuss the working parameters that how to efeect the micro-electrode’s size and form. For increasing the mass diffusion effect, it added the rotational system in the experimet. Experimental results show that low applied voltage, high concentration electrolyte and an appropriate rotation of electrode are preferred to fabricate micro electrodes with diameter less than 100 μm. From the experiment, it found the rotational speed had critical affect in the form of micro-electrode. When processing the microelectrode by the pulsed voltage power supply, it could fabricate the 100 μm cylindrical tungsten microelectrode and length of 2 mm, 3 mm and 4 mm by linear decay of applied voltage or duty at different length, and we used the micro-electrode to process the electrochemical micro drilling.
In the electrochemical machining of deep holes, especially for small holes, driving out the sludge is always difficult. The hollow tool electrode or lateral flow of the electrolyte cannot be applied to improve the machining precision anymore. In this paper, a rotational tool electrode and a high-frequency pulsed generator were applied herein to drive out the sludge, increase the machining precision and achieve the high aspect ratio hole. By the experiment, a high quality micro hole with a 33.35 μm overcut is drilled by a WC pin of diameter 50 μm on a 304 stainless steel plate of thickness 1000 μm(The hole aspect ratio reaches around 1 : 9.).It shows that a rotational tool can be utilized in the deep hole, electrochemical micro-drilling. In the electrochemical micro drilling with ultral short pulse voltage, by the experiment, it found the relationship between pulsed frequency and overcut was not linear and an excess amount of hydrogen gas bubbles would hinder hole machining, and reduce machining efficiency and precision. Under 30 ns pulsed on-time, a high-quality micro hole with a 13.75 μm overcut is drilled on a nickel plate of 300 μm thick.
關鍵字(中) ★ 電雙層
★ 微孔
★ 脈衝電壓
★ 微電化學加工
★ 微電極
關鍵字(英) ★ Electrochemical micromachining
★ Micro electrode
論文目次 摘要 i
Abstract iii
目錄 v
表目錄 ix
圖目錄 x
符號說明 xiv
第一章 序論 1
1-1 前言 1
1-2電化學加工製做微電極 4
1-3 微電化學孔加工 8
1-4 文獻回顧 9
1-4-1 電極製作 10
1-4-2電化學加工 15
1-5 研究目的 28
第二章 理論 31
2-1 電化學加工基本理論 31
2-2 極化(polarization) 32
2-3 液相質傳動力學 35
2-4 電解液導電度 37
2-5 電極直徑和加工時間的關係 37
2-6 電雙層理論 38
2-7 電流效率與電流密度 41
2-8 電極間距和加工時間的關係 42
第三章 實驗設備與步驟 45
3-1 實驗裝置 45
3-1-1 機台結構設計 45
3-1-2 刀具進給控制系統 46
3-1-3 電源供應系統 47
3-1-4 伺服馬達 48
3-1-5 導電度量測儀器 48
3-1-6 恆電位儀 49
3-1-7 恆溫加熱器 49
3-2 實驗材料 50
3-2-1以電化學加工法微電極製作 50
3-2-2脈衝電化學孔加工 51
3-3 實驗步驟 54
第四章 利用電化學加工製作微電極分析 58
4-1 電化學加工製作微電極 58
4-1-1轉速對微電極製作影響 59
4-1-2 加工電壓對微電極製作影響 62
4-1-3 電解液濃度對微電極製作影響 63
4-1-4 陰陽極浸入長度對微電極製作影響 64
4-1-5 電流大小對微電極製作影響 65
4-1-6 電極電極間距對微電極製作影響 66
4-1-7 圓柱電極製作之技術 66
4-2 脈衝電化學加工製作微電極 67
4-2-1脈衝電壓對微電極製作影響 69
4-2-2 脈衝週期對微電極製作影響 70
4-2-3 加工能率(Duty)對微電極製作影響 70
4-2-3-1 高加工能率 71
4-2-3-2 低加工能率 72
4-2-4 電解液溫度對微電極製作影響 73
4-2-5 線性電壓遞減對微電極製作影響 74
4-2-6 線性加工能率遞減對微電極製作影響 77
4-2-7 不同長度之類圓柱電極製作之技術 78
第五章 脈衝電化學孔加工 81
5-1 使用旋轉刀具之脈衝電化學深孔加工 81
5-1-1 脈衝電壓對孔加工精度的影響 83
5-1-2 電解液濃度對孔加工精度的影響 84
5-1-3 脈衝頻率對孔加工精度的影響 84
5-1-4 刀具尺寸對孔加工精度的影響 85
5-1-5 刀具進給速率對孔加工精度的影響 86
5-1-6 陰極刀具轉速對孔加工精度的影響 86
5-1-7 加工深度對孔加工精度的影響 88
5-1-8微孔元件製作 88
5-2 極短脈衝電化學孔加工 89
5-2-1 脈衝電壓對孔加工精度的影響 90
5-2-2 電解液濃度對孔加工精度的影響 91
5-2-3 脈衝頻率對孔加工精度的影響 92
5-2-4 脈衝放電時間對孔加工精度的影響 93
5-2-5 刀具進給速率對孔加工精度的影響 94
5-2-6 加工深度對孔加工精度的影響 95
5-2-7微孔和三維元件製作 96
第六章 結論 98
參考文獻 100
表目錄
表1 Ni200之化學組成表 116
表2 304SS之化學組成表 116
表3. NaOH電解液導電度 116
表4. NaNO3電解液導電度 116
表5. 不同線性遞減電壓下製作微電極之加工參數 117
表6. 不同線性遞減加工能率下製作微電極之加工參數 117
表7(a). 0.3 M HCL+NaCL導電度 118
表7(b). 0.1 M HCL+NaCL導電度 118
圖目錄
圖1-1. 電化學拋光之黏稠層 119
圖1-2. 電化學拋光之電壓-電流( V - I )曲線圖[7] 120
圖1-3. 微探針加工示意圖[13] 120
圖1-4. 動力法加工示意圖[14] 121
圖1-5. 加工時質量擴散層示意圖[16] 122
圖2-1.電雙層示意圖[20] 123
圖2-2. 加工之電雙層等效電路圖 124
圖3-1. 3-D懸臂式機械手臂示意圖 125
圖3-2. 實體加工機台 125
圖3-3. 數位示波器與脈衝產生器 126
圖3-4. ECM對純鐵加工之極化曲線和電極介面模型[48] 127
圖4-1. 微電極量測尺寸位置圖 128
圖4-2. 純鎢棒在不同NaOH電解液濃度下之電壓電流曲線圖 128
圖4-3. 微電極加工過程圖: (a)電極底部黏稠層狀況(2V,1000RPM) (b)氧氣泡貼附電極表面(1.6V, 0RPM) 129
圖4-4. Fluent模擬不同轉速的流場與壓力分佈之變化 130
圖4-5. 在不同轉速下所製作之微電極形狀 131
圖4-6. 不同轉速下電極外型變化 132
圖4-7. 不同轉速下加工600秒時,電極平均直徑差異 132
圖4-8. 不同加工電壓下電極外型變化 133
圖4-9. 在加工電壓1.2V下電極外型隨時間變化 133
圖4-10. 在不同加工電壓下電極表面 (a) 未加工,(b) 1.4V, 1000RPM, (c) 2.0V, 1000RPM 134
圖4-11. 不同電解液濃度下電極外型變化 135
圖4-12. 不同陰極面積下電極外型變化 135
圖4-13. 不同陽極浸入長度下電極外型變化 136
圖4-14. 不同時間下之電極尺寸和表面變化(電極長度3mm) 136
圖4-15. 不同電流下電極外型變化 137
圖4-16. 不同電極間距下電極外型變化 137
圖4-17. 在加工電壓1.4 V下: (a)電極外型(b)電極尺寸隨時間變化 138
圖4-18. 類圓柱電極製作 139
圖4-19. 實驗加工示意圖 140
圖4-20. 在不同脈衝電壓下直流電源和脈衝電源加工之金屬移除量 差異 141
圖4-21. 不同脈衝電壓下直流電源和脈衝電源加工下之電極外型 141
圖4-22. 不同脈衝電壓下電極外型變化 142
圖4-23. 不同脈衝週期下電極外型變化 143
圖4-24. 不同加工能率下電極外型變化 (50 %~80 %) 144
圖4-25. 不同加工能率下電極外型變化 (50 %~20 %) 145
圖4-26. 不同電解液溫度下電極外型變化 146
圖4-27. 不同線性遞減電壓下電極外型和尺寸變化 147
圖4-28. 不同線性遞減加工能率下電極外型和尺寸變化 148
圖4-29. 由線性遞減電壓所製作出不同長度之微電極 149
圖4-30. 使用所製作之微電極進行脈衝電化學孔加工 (100X) 150
圖5-1. 脈衝電化學孔加工示意圖 151
圖5-2. 不鏽鋼不同NaNO3電解液濃度下之電壓電流曲線圖 152
圖5-3. 不同脈衝放電時間下改變脈衝電壓之孔過切量變化 152
圖5-4. 不同脈衝電壓和脈衝放電時間所加工出的孔外型變化 (100X) 153
圖5-5. 不同脈衝放電時間下改變脈衝電壓之孔錐度變化 153
圖5-6. 不同脈衝放電時間下改變電解液濃度之孔過切量變化 154
圖5-7. 不同脈衝放電時間下改變電解液濃度之孔錐度變化 154
圖5-8. 不同脈衝頻率下改變脈衝電壓之孔過切量變化 155
圖5-9. 不同脈衝頻率下改變脈衝電壓之孔錐度變化 155
圖5-10. 不同脈衝放電時間下改變陰極刀具尺寸之孔過切量變化 156
圖5-11. 不同脈衝放電時間下改變陰極刀具尺寸之孔錐度變化 156
圖5-12. 不同脈衝放電時間下改變刀具進給速率之孔過切量變化 157
圖5-13. 不同脈衝放電時間下改變陰極刀具轉速之孔過切量變化 158
圖5-14. 不同加工深度下改變脈衝放電時間之孔過切量變化 159
圖5-15. 以脈衝電化學加工不同厚度工件之孔外型 (200X) 160
圖5-16. 不同脈衝頻率之輸出波形圖 161
圖5-17. 不同脈衝電壓下孔過切量變化 162
圖5-18. 在5V脈衝電壓下所加工之孔外型和氣泡阻礙情形 162
圖5-19. 不同脈衝電壓下孔錐度變化 163
圖5-20. 不同電解液濃度下孔過切量變化 163
圖5-21. 不同電解液濃度下孔錐度變化 164
圖5-22. 不同脈衝頻率下孔過切量變化 164
圖5-23. 不同脈衝頻率下孔錐度變化 165
圖5-24. 不同脈衝放電時間下孔過切量變化 165
圖5-25. 不同脈衝放電時間下孔錐度變化 166
圖5-26. 不同脈衝放電時間下所加工出的孔外型 166
圖5-27. 不同刀具進給速率下孔過切量變化 167
圖5-28. 不同刀具進給速率下孔錐度變化 167
圖5-29. 不同加工深度下孔過切量變化 168
圖5-30. 以極短脈衝電化學加工不同厚度工件之孔外型 168
圖5-31. 以極短脈衝電化學加工3D元件 169
參考文獻 1. D.J. Nagel and M.E. Zaghloul, MEMS: Micro techanology : Mega impact, IEEE Circuit Devices Magazine. Vol. 28, pp. 14-25 (2001).
2. K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu1, R. Resnick and A. DeSilva, Micro and nano machining by electro-physical and chemical processes, CIRP Annals Manufacturing Technology, Vol. 55 (1), 643-666 (2006).
3. J. A. McGeough, M. Leu, K. P. Rajurkar, A. DeSilva, Q. Liu, Electroforming Process and Application to Micro/Macro Manufacturing, CIRP Annals Manufacturing Technology, Vol. 50 (1), 499-502 (2001).
4. X. Liu, R.E. Devor, S.G. Kapoor and K.F. Ehmann, The mechanics of machining at the microscale: assessment of the current state of the science, Journal of Manufacturing Science and Engineering, Vol. 126(4), 666-678 (2004).
5. 楊顯謀,“不銹鋼電解拋光技術簡介”,鋼鐵研究,72 期,84-96
頁,12 月,1989。
6. H. Hocheng, and P.S. Pa, Electropolishing and electrobrightening of holes using different feeding electrodes, Journal of Materials Processing technology, Vol. 89-90, pp. 440-446 (1999).
7. 陳裕豐,“高潔淨閥件之流道表面處理-電解拋光(EP)技術”,機械工業雜誌,198 期, 230-240頁,9 月,1999。
8. M. S. Nikolova, A. Natarajan and P. C. Searson, Electrochemical fabrication of sharp nickel tips in H2SO4 solutions, Journal of the Electrochemical Society, Vol. 144(2), pp. 455-460 (1997).
9. J.A. McGeough, Principles of electrochemical machining, Chapman Hall, London, p. 9, 1974.
10. G. Binnibg, H. Rohrer, and C. Cerber, Atomic force microscopy, Phys Rev. Lett, Vol. 56, pp. 930 (1986).
11. G.J Edwards and P.R.Pearce, Comparison of AC and DC electrochemical etching techniques for the fabrication of tungsten whiskers, Journal of Physics D Applied Physics, Vol. 11, pp. 761-764 (1978).
12. S.F.Ceballos, G.Mariotts, S.Murphy, and I.V.Shvets, Fabrication of magnetic STM probes and their application to studies of the Fe3O4 (0 0 1) surface, Surface Science, Vol. 523, pp. 131-140 (2003).
13. S. Kerfriden, A. H. Nahle, S. A. Campbel, F. C. Walsh, and J. R.Smith, Short communication the electrochemical etching of tungsten STM tips, Electrochimica Acta, Vol. 43, pp. 1939-1944 (1998).
14. R. Hobara, S. Yoshimoto, and S. Hasegawa, Dynamic electrochemical etching technique for tungsten tips suitable for multi-tip scanning tunneling microscopes, Journal of Surface Science and Nanotechnology, Vol. 5, pp. 94-98 (2007).
15. D. Xu, K. M. Liechti, and K. R. Chandar, Mesoscale scanning probe tips with subnanometer rms roughness, Review of Scientific Instruments, Vol. 78(7), pp. 0737071-0737079 (2007).
16. Y. M. Lim and S. H. Kim, An electrochemical fabrication method for extremely thin cylindrical micropin, International Journal of Machine Tools & Manufacture, Vol. 41, pp. 2287-2296 (2001).
17. Y. M. Lim, H. J. Lim, J. R. Liu and S. H. Kim, Fabrication of cylindrical micropins with various diameters using DC current density control, Journal of Materials Processing Technology, Vol. 141, pp. 251-255 (2003).
18. Z. Wang, B. Zhu and G. Cao, Fabricating microelectrode by electrochemical micromachining, Harbin, china Dept. of Mechanic Engineering, Harbin Institute of Technology, Vol. 6041, pp. 60411p1-60411p5 (2006) (EI).
19. S. H. Choi, S.H. Ryu and C.N. Chu, Fabrication of WC micro-shaft by using electrochemical etching, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 682-687 (2007).
20. E. S. Lee, S. Y. Baek, and C. R. Cho, A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 762-769 (2007).
21. D. Zhu1, K. Wang and N. S. Qu, Micro wire electrochemical cutting by using in situ fabricated wire electrode, CIRP Annals Manufacturing Technology, Vol. 56, pp.241-244 (2007).
22. M. Wang, D. Zhu and L. Wang, Preparation of electrode array by electrochemical etching based on FEM, Journal of Material Science and Technology, Vol. 24(6), pp.845-849 (2008).
23. D. Zhu and H. Y. Xu, Improvement of electrochemical machining accuracy by using dual pole tool, Journal of Materials Processing Technology, Vol. 129 pp. 15-18 (2002).
24. H. Hocheng,Y. H. Sun, S. C. Lin and P.S. Kao, A material removal analysis of electrochemical machining using flat-end cathode, Journal of Material Processing Technology, Vol. 140, pp. 264-268 (2003).
25. V.P. Zhitnikov, G.I. Fedorova, O.V. Zinatullina and A.V. Kamashev, Simulation of non-stationary processes of electrochemical machining, Journal of Materials Processing Technology, Vol. 149 pp. 398-403 (2004).
26. A.N. Zaytsev, V.P. Zhitnikov and T.V. Kosarev, Formation mechanism and elimination of the workpiece surface macro-defects, aligned along the electrolyte
stream at electrochemical machining, Journal of Materials Processing Technology, Vol. 149 pp. 439-444 (2004).
27. J. Kozak, K. P. Rajurkar and Y. Makkar, Selected problems of micro-electrochemical machining, Journal of Materials Processing Technology, Vol. 149 pp. 426-431 (2004).
28. S. K. Mukherjee, S. Kumar and P. K. Srivastava, Intervening variables in electrochemical machining, Tamkang Journal of Science and Engineering, Vol. 8, pp. 23-28 (2005).
29. J. C. d. S. Neto, E. M. d. Silva and M. B. d. Silva, Intervening variables in electrochemical machining, Journal of Materials Processing Technology, Vol. 179, pp. 92-96 (2006).
30. X. Jiawen, Y. Naizhang, T. Yangxin and K.P. Rajurkar, The modelling of NC-electrochemical contour evolution machining using a rotary tool-cathode, Journal of Materials Processing Technology, Vol. 159, pp. 272-277 (2005).31. T. Kurita and M. Hattori, A study of EDM and ECM/ECM-lapping complex
machining technology, International Journal of Machine Tool and Manufacture, Vol. 46, pp. 1804-1810 (2006).
32. T. Kurita, C. Endo, Y. Matsui, H. Masuda, K. Terasawa, F. Tanaka, H. Ikeda, K. Oguchi and K. Kobayashi, Mechanical/electrochemical complex machining method for efficient, accurate, and environmentally benign process, International Journal of Machine Tool and Manufacture, Vol. 48, pp. 1599-1604 (2008).
33. J. C. Fang, Z. J. Jin, W. J. Xu, Y. Y. Shi, Magnetic electrochemical finishing
machining, Journal of Materials Processing Technology, Vol. 129, pp. 283-287 (2002).
34. Z. Fan, T. Wan, L. Zhong, The mechanism of improving machining accuracy of ECM by magnetic field, Journal of Materials Processing Technology, Vol. 149, pp. 409-413 (2004).
35. B. Huaiqian, X. Jiawen, L. Ying, Aviation-oriented micromachining technology-micro-ECM in Pure Water, Chinese Journal of Aeronautics, Vol. 21,
pp. 455-461 (2008).
36. S. J. Lee, C. Y. Lee, K. T. Yang, F. H. Kuan and P. H. Lai, Simulation and fabrication of micro-scaled flow channels for metallic bipolar plates by the electrochemical micro-machining process, Journal of Power Source, Vol. 185, pp. 1115-1121 (2008).
37. R. Maeda, K. Chikamori and H. Yamamoto, Feed rate of wire electrochemical machining using pulsed current, Precision Engineering, Vol. 31, pp. 193-199 (1984).
38. E. S. Lee, J. W. Park, and Y. H. Moon, A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing, International Journal of Advanced Manufacture Technology, Vol. 20, pp. 720-726 (2002).
39. B. Bhattacharyya and J. Munda, Experimental investigation on the influent of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tool and Manufacture, Vol. 43, pp. 1301-1310 (2003).
40. B. Bhattacharyya and J. Munda, Experimental investigation into electrochemical micromachining (EMM) process, Journal of Materials Processing Technology
Vol. 140(1-3) pp. 287-291 (2003).
41. B. Bhattacharyya , M. Malapati, J. Munda, Advancement in electrochemical micro-machining, Journal of Materials Processing Technology, Vol. 44, pp.
1577-1589 (2004).
42. B. Bhattacharyya , M. Malapati, J. Munda, Experimental study on electrochemical micromachining, Journal of Materials Processing Technology, Vol. 169, pp. 485-492 (2005).
43. S. J. Ebeid, M. S. Hewidy, T. A. Eltaweel, A. H. Youssef, Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology, Journal of Materials Processing Technology, Vol.149, pp.432-438 (2004).
44. T. Kurita, K. Chikamori, S. Kubota and M. Hattori, A study of three-dimensional shape machining with an ECμM system, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1311-1318 (2006).
45. B. Bhattacharyya , M. Malapati , J. Munda and A. Sarkar, Influence of tool vibration on machining performance in electrochemical micro-machining of copper, Journal of Materials Processing Technology, Vol.47, pp. 335-342 (2007).
46. H. P. Tsui, J. C. Hung, J. C. YOU and B.H. Yan, Improvement of electrochemical microdrilling accuracy using helical tool. Material and Manufacturing Processes Vol. 23, pp. 499-505 (2008).
47. T. Haisch, E. Mittemeijer, J. W. Schultze, Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions microstructure of surface films formed by carbides, Electrochimica Acta, Vol. 47, pp. 235-241 (2001).
48. M. M. Lorengel, I. Kluppel, C. Rosenkranz, H. Bettermann and J. W. Schultze, The surface structure during pulsed ECM of iron in NaNO3, Electrochimica Acta, Vol. 48, pp. 3203-3211 (2003).
49. M. M. Lorengel, I. Kluppel, C. Rosenkranz, H. Bettermann, J. W. Schultze, Pulsed electrochemical machining of iron in NaNO3 fundamentals and new aspects, material and manufacturing processes, Vol. 20, pp. 1-8 (2005).
50. M. M. Lorengel and C. Rosenkranz, Micro-electrochemical surface and product
investigations during electrochemical machining (ECM) in NaNO3, Electrochimica Acta, Vol. 47, pp. 785-794 (2005).
51. C. Rosenkranz, M. M. Lorengel and J. W. Schultze, The surface structure during pulsed ECM of iron in NaNO3, Electrochimica Acta, Vol. 50, pp. 2009-2016 (2005).
52. T. R. Idrisov, A. N. Zaitzev and V. P. Zhitnikov, Estimation of the process localization at the electrochemical machining by microsecond pulses of bipolar current, Journal of Materials Processing Technology, Vol. 149, pp. 479-485 (2004).
53. J. Kozak, K. P. Rajurkar, and R. F. Ross, Computer simulation of pulse
electrochemical machining (PECM), Journal of Materials Processing Technology, Vol. 28, pp. 149-157 (1991).
54. J. Kozak, K. P. Rajurkar, and B. Wei, Modelling and analysis of pulse electro-chemical machining (PECM), Journal of Engineering for Industry, Vol. 116, pp. 316-323 (1994).
55. J. Kozak, K. P. Rajurkar, and Y. Makkar, Study of pulse electrochemical micromachining, Journal of Manufacturing Processes, Vol. 6, pp. 7-14 (2004).
56. S. V. Damme, G. Nelissen, B. V. D. Bossche and J. Deconinck, Numerical model for predicting the efficiency behavior during pulsed electrochemical machining of steel in NaNO3, Journal of Applied Electrochemistry, Vol. 36, pp. 1-10 (2006).
57. R. Schuster, V. Kirchner and P. Allongue, Electrochemical micro machining, Science, Vol. 289, No. 5, pp. 98-101 (2000).
58. V. Kirchner, L. Cagnon, R. Schuster, and Gerhard Ertl, Electrochemical machining of stainless steel microelements with ultrashort voltage pulses, Applied Physics Letters, Vol. 79(11), pp. 1721-1723 (2001).
59. A. L. Trimmer, J. L. Hudson, M. Kock and R. Schuster, Single-step electrochemical machining of complex nanostructures with ultrashort voltagepulses, Applied Physics Letters Vol. 82(19), 3327-3329 (2003).
60. R. Schuster, Electrochemical Microstructuring with short voltage pulses, ChemPhysChem, Vol. 8, pp. 34-39 (2007).
61. Y. Li, Y. Zheng, G. Yang and L. Q. Peng, Localized electrochemical micromachining with gap control, Sensors and Actuators A, Vol. 8, pp.
144-148 (2003). 62. S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua, Electro-chemical micro drilling using ultra short pulses, Precision Engineering, Vol. 28, pp. 129-134 (2004).
63. M. Kock, V. Kirchner and R. Schuster, Electrochemical micromachining with ultra-short voltage pulses a versatile method with lithographical precision, Electrochimica Acta Vol. 48, pp. 3213-3219(2003).
64. B. H. Kim, S. H. Ryu, D. K. Choi, and C. N. Chu, Micro electrochemical milling, Journal of Micromechanics and Microengineering, Vol. 15(1), pp. 124-129 (2004).
65. P. Allongue, P. Jiang, V. Kirchner and A. L. Trimmer, and R. Schuster, Electrochemical micromachining of p-type silicon, Journal of Physical Chemistry B, Vol. 108, pp. 14434-14439 (2004).
66. B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi and C. N. Chu, Micro electrochemical machining of 3D micro structure using dilute sulfuric acid, CIRPAnnals - Manufacturing Technology, Vol.54 pp. 191-194 (2005).
67. B. H. Kim, B. J. Park and C. N. Chu, Fabrication of multiple electrodes by reverse EDM and their application in micro ECM, Journal of Micromechanics and Micro-engineering, Vol.16 pp. 843-850 (2006).
68. M. S. Park and C. N. Chu, Micro-electrochemical machining using multiple tool electrodes, Journal of Micromechanics and Micro-engineering, Vol. 17(8), pp. 1451-1457 (2007).
69. B. J. Park , B. H. Kim and C. N. Chu, The effects of tool electrode size on characteristics of micro electrochemical machining, CIRP Annals – Manufacturing Technology, Vol. 55(1) , pp. 197-200 (2006).
70. Z. Zhang, D. Zhu, N. S. Qu and M. Wang, Theoretical and experimental investigation on electrochemical micromachining, MICROSYSTEM technologies-micro-and nanosystems-information storage and processing systems, vol. 13, pp.607-612 (2007).
71. H. S. Shin, B. H. Kim and C. N. Chu, Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses, Journal of Micromechanics and Micro-engineering, Vol. 18(8), pp. 075009-075014 (2008).
72. D. Maria, S. Joshi and S. K. Maria, Modeling of electrochemical micromachining comparison to experiments, Journal of Micro-Nanolithography MEMS and MOEMS, Vol. 7(3), pp. 0330151-0330157 (2008).
73. S. H. Ryu, Micro fabrication by electrochemical process in citric acid electrolyte, Journal of Materials Processing Technology, Vol. 209, pp. 2831-2837 (2009).
74. C. H. Jo, B. H. Kim and C. N. Chu, Micro electrochemical machining for complex internal micro features, CIRP Annals - Manufacturing Technology, Vol. 58, pp. 181-184 (2009).
75. J. J. Maurer, J. J. Mallett and J. L. Hudson, Electrochemical micromachining of Hastelloy B-2 with ultra-short voltage pulses, Electrochimica Acta Vol. 55, pp. 952-958 (2010).
76. J.A. Kenney and G.S. Hwang, Electrochemical machining with ultra voltage pulses: modeling of charge dynamics and feature profile evolution, Nanotechnology, Vol. 16, pp. S309-S313 (2005).
77. J.A. Kenney and G.S. Hwang, Etch trends in electrochemical machining with ultrashort voltage pulses, Electrochemical and Solid-State Letters, Vol. 9, No. 1, pp. D1-D4 (2006).
78. J.A. Kenney and G.S. Hwang, Computational analysis of intra-tool interactions in electrochemical micromachining with multi-tip tool electrodes, Electrochemical and Solid-State Letters, Vol. 9(9), pp. D21-D23 (2006).
79. Y.F. Luo, Differential equation for the ultra-fast transient migration in electrolytic dissolution, Electrochemistry Communications, Vol. 8, pp. 353-358 (2006).
80. J. Kozak, D. Gulbinowicz, and Z. Gulbinowicz, The mathematical modeling and computer simulation of pulse electrochemical micromachining, Engineering Letter, Vol. 16, pp. 556-561 (2008).
81. M. Sen, H.S. Shan, A review of electrochemical macro- to micro-hole drilling processes, International Journal of Machine Tools and Manufacture, Vol. 45, pp. 137-152 (2005).
82. M. Datta, D. Landolt, Fundamental aspects and applications of electrochemical microfabrication, Electrochemical Acta, Vol. 45, pp. 2535-2558 (2000).
83. 胡啟章編著,電化學原理與方法,五南圖書,p. 12-13(2002).
84. 田福助編著,電化學基本原理與應用,五洲出版社,p. 16,p. 104 (2004).
85. 吳浩青,李永舫編著,電化學動力學,科技圖書,p. 46,p. 121 (2001).
86. S. V. Prasad, M. T. Dugger, T. R. Christenson, and D. R. Tallant, LIGA micro-systems: surface interactions, tribology, and coatings, Journal of Manufacturing Processes, Vol. 6, pp. 107-116 (2004).
87. 柯賢文編著,腐蝕及其防制,全華科技,p. 93-96 (1995).
88. J. F. Thorpe and R. D. Zerkle, Analytic determination of the equilibrium electrode gap in electrochemical machining, International Journal of Machine Tools Design and Research, Vol. 9, pp. 131-144 (1969).
指導教授 洪勵吾(Lih-wu Hourng) 審核日期 2010-5-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明