博碩士論文 943403018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:75.101.220.230
姓名 陳誌遠(Chih-Yuan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用博登量測器分析人類胎盤源多功能幹細胞的化學趨向行為
(Quantitative analysis of PDMCs (Placenta derived multipotent cells) chemotaxis using the Boyden chamber assay)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在細胞的眾多行為中,細胞的運動具有廣泛的影響,例如免疫反應過程,傷口治癒,腫瘤細胞的轉移與入侵組織,甚至胎胚形成等不同反應之中,細胞運動都扮演重要的角色,由此可知細胞運動對病理和生理現象的影響及其重要性。而博登量測器是經常被用於評估細胞運動特性的工具之一,能提供趨向因子穩定的梯度分佈,此特性有助於研究細胞對於不同化學物質的趨向性反應。
本文研究人類胎盤源多功能幹細胞對於第一型膠原蛋白的反應,利用博登量測器評估此幹細胞對於第一型膠原蛋白的化學趨向性反應,以及分析細胞膜表面上的相關受體。同時,本研究也發展數學模型,考慮趨向因子在博登量測器中的輸送現象,利用Lapidus-Schiller 方程式模擬細胞的隨機漫步運動和化學趨向性反應,另外,也加入細胞在博登量測器上流體層的沈積現象,用以了解博登量測器實驗的過程。此外,更進一步採用受體反應方程式以探討細胞受體和趨向因子之間的反應,對於化學趨向運動的影響。本文結合實驗結果與數學模擬,以曲線擬合的方式得到細胞的運動係數以及對於第一型膠原蛋白相關的反應常數。利用無因次參數分析實驗的過程,以及探討各無因次參數對於博登量測器實驗的影響。本文發現考慮細胞的沈積現象時,因為沈積效應使得受體與趨向因子之間的反應產生延遲,Lapidus-Schiller 方程式所假設的細胞受體的準靜態會產生誤差,使用包含受體反應的完整數學模型,方能較準確的描述博登量測器的化學趨向實驗。
摘要(英) Cell migration has various effects on the biological phenomena, such as wound healing, metastasis, and invasion. It is even involved in embryogenesis. Cell migration is one of the most important processes in physiology and pathology. The Boyden chamber can provide a stable gradient distribution and is commonly used to estimate cell motility. A Boyden chamber assay can be used to easily determine the chemotaxis of various chemicals.
In this study, we examined the response of placenta-derived multipotent cells (PDMCs) on the collagen type I. We used a Boyden chamber to estimate the chemotactic responses of the cells to Type I collagen, and determined the integrins on the cell membrane using a flow cytometer. We concurrently developed a mathematical model to investige the process of the chemotaxis experiment that includes the chemoattractant transpont in the Boyden chamber assay. In addition, we used the Lapidus-Schiller equation to model cells’ random walk and chemotactic motility that combined with the cell sedimentation in the upper well of the Boyden chamber. Furthermore, we used a more detailed mathematical model to describe the chemotactic response. The response between the receptor and the chemoattratant was used to simulate chemotactic migration. Results show that once cell sedimentation is involved, the assumption of a quasi-steady receptor distribution by the Lapidus-Schiller equation may be invalid for the Boyden chamber assay. This is because the formation of the chemical-receptor complexes is profoundly delayed by the process of cell sedimentation in the upper well of the Boyden chamber.
關鍵字(中) ★ 化學趨向性
★ 數值模擬
★ 細胞運動
★ 博登量測器
★ 幹細胞
關鍵字(英) ★ chemotaxis
★ Cell migration
★ Boyden chamber assay
★ numerical simulation
★ stem cell
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 IX
符號說明 XI
第一章 緒論 1
1.1. 文獻回顧 1
1.1.1 細胞運動 1
1.1.2 博登量測器實驗 4
1.1.3 博登量測器數值模擬 6
1.2. 研究動機 9
第二章 化學趨向性實驗 13
2.1. 材料與藥劑配製 13
2.1.1 材料與藥劑 13
2.1.2 藥劑配方 15
2.2. 實驗方法 16
2.2.1 細胞培養 16
2.2.2 薄膜孔隙瘵的量測 17
2.2.3 博登量測器實驗 17
2.2.4 細胞與第一型膠原蛋白反應 19
2.2.5 人類胎盤多功能幹細胞的免疫分型 (Immunophenotyping) 19
2.2.6 抑制integrin α1的化學趨向性實驗 20
2.2.7 抑制integrin β1的化學趨向性實驗 20
2.3. 實驗結果 21
2.4. 討論 24
第三章 博登量測器的簡化數學模型 34
3.1. 統御方程式 34
3.1.1 細胞在上流體層的守恆方程式 35
3.1.2 細胞在薄膜層的反應方程式 38
3.1.3 第一型膠原蛋白在博登量測器中的守恆方程式 39
3.1.4 初始條件 41
3.1.5 邊界條件 41
3.2. 無因次化 42
3.2.1 無因次化統御方程式 42
3.2.2 無因次化初始與邊界條件 44
3.3. 數值方法 45
3.3.1 細胞的有限差分式 46
3.3.2 第一型膠原蛋白的有限差分式 48
3.3.3 初始條件差分式 50
3.3.4 邊界與界面條件差分式 51
3.3.5 參數擬合 53
3.4. 結果與討論 55
3.4.1 細胞運動參數 55
3.4.2 實驗過程模擬 56
3.4.3 參數敏感度分析 57
3.4.4 無因次參數分析 57
3.5. 小結 59
第四章 博登量測器的完整數學模型 80
4.1. 統御方程式 80
4.1.1 細胞在上流體層的守恆方程式 80
4.1.2 細胞在薄膜中的守恆方程式 81
4.1.3 受體方程式 82
4.1.4 第一型膠原蛋白的質量守恆方程式 84
4.1.5 初始條件 85
4.1.6 邊界條件 85
4.2. 無因次化 86
4.2.1 無因次化方程式 86
4.2.2 無因次化初始與邊界條件 88
4.3. 數值方法 88
4.3.1細胞的有限差分式 89
4.3.2受體的有限差分式 90
4.3.3第一型膠原蛋白的有限差分式 91
4.3.4初始條件差分式 92
4.3.5邊界條件差分式 92
4.3.6參數擬合 93
4.4. 結果與討論 94
4.4.1 細胞運動參數 94
4.4.2實驗過程的模擬 94
4.4.3參數敏感度分析 96
4.4.4 無因次參數分析 97
4.5. 簡化與完整模型的比較 101
4.6. 小結 103
第五章 結論與未來展望 142
5.1. 結論 142
5.2. 未來展望與建議 143
參考文獻 145
附錄 試劑,藥品與設備 153
參考文獻 Adler, J., 1966. Chemotaxis in bacteria. Science 153(3737), 708–716.
Agarwal, G., Mihai, C., and Iscru, D.F., 2007. Interaction of discoidin domain receptor 1 with collagen type 1. J. Mol. Biol. 367(2), 443–455.
Amenta, P.S., Gay, S., Vaheri, A., and Martinez-Hernandez, A., 1986. The extra- cellular matrix is an integrated unit: Ultrastructural localization of collagen types I, III, IV, V, VI, fibronectin, and laminin in human term placenta. Collagen Rel. Res. 6(2), 125–152.
Ananthakrishnan, R. and Ehrlicher, A., 2007. The forces behind cell movement. Int. J. Biol. Sci. 3(5), 303–317.
Aznavoorian, S., Stracke, M.L., Krutzsch, H., Schiffmann, E., and Liotta, L.A., 1990. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 110(4), 1427–1438.
Baker, E.L., and Zaman, M.H., 2010. The biomechanical integrin. J. Biomech. 43(1), 38–44.
Barocas, V.H., Moon, A.G., and Tranquillo, R.T., 1995. The fibroblast-populated collagen microsphere assay of cell traction force — part 2: Measurement of the cell traction parameter. J. Biomech. Eng. 117(2), 161–170.
Bignold, L.P., 1988a. Kinetics of chemo-attraction of polymorphonuclear leukocytes towards N-formyl peptide studied with a novel polycarbonate (Nucleopore) membrane in the Boyden chamber. Experientia. 44(6), 518–21.
Bignold, L.P., 1988b. Measurement of chemotaxis of polymorphonuclear leukocytes in vitro. J. Immunol. Methods 108(1-2), 1–18.
Boyden, S.V., 1962. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115(3), 453–466.
Brehm, W., Burk, J., Delling, U., Gittel, C., and Ribitsch, I., 2012. Stem cell-based tissue engineering in veterinary orthopaedics. Cell Tissue. Res. 347(3), 677–688.
Buettner, H.M., Lauffenburger, D.A., and Zigmond, S.H., 1989a. Measurement of leukocyte motility and chemotaxis parameters with the Millipore filter assay. J. Immunol. Methods 123(1), 25–37.
Buettner, H.M., Lauffenburger, D.A., and Zigmond, S.H., 1989b. Cell transport in the Millipore filter assay. AIChE J. 35(3), 459–465.
Byrne, H.M., Cave, G., and McElwain, D.L.S., 1998. The effect of chemotaxis and chemokinesis on leukocyte locomotion: A new interpretation of experimental results. IMA J. Math. Appl. Med. Biol. 15(3), 235–256.
Chan, B.M.C. and Hemler, M.E., 1993. Multiple functional forms of the integrin VLA-2 can be derived from a single α2 cDNA clone: Interconversion of forms induced by an anti-β1 antibody. J. Cell Biol. 120(2), 537–543.
Chang, C., Lauffenburger, D.A., and Morales, T.I., 2003. Motile chondrocytes from newborn calf: Migration properties and synthesis of collagen II. Osteoarthritis Cartilage 11(8), 601-612.
Chang, C.M., Kao, C.L., Chang, Y.L., Yang, M.J., Chen, Y.C., Sung, B.L., Tsai, T.H., Chao, K.C., Chiou, S.H., and Ku, H.H., 2007. Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem. Biophys. Res. Commun. 357(2), 414-20.
Chao, P.G.G., Roy, R., Mauck, R.L., Liu, W., Valhmu, W.B., and Hung, C.T., 2000. Chondrocyte translocation response to direct current electric fields. J. Biomech. Eng. 122(3), 261–267.
Chen, H-C., 2005. Boyden chamber assay. Meth. Mol. Biol. 294(II), 15–22.
Chien, C.C., Yen, B.L., Lee, F.K., Lai, T.H., Chen,Y.C. Chan, S.H., and Huang, H.I., 2006. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 24(7), 1759–1768.
Chou, M.T., Chang, S.N., Ke, C., Chang, H.I., Sung, M.L., Kuo, H.C., and Chen, C.N., 2010. The proliferation and differentiation of placental-derived multipotent cells into smooth muscle cells on fibrillar collagen. Biomaterials 31(15), 4367-75.
Chung, C.A. and Chen, C-Y., 2009. The effect of cell sedimentation on measuring chondrocyte population migration using a Boyden chamber. J. Theor. Biol. 261(4), 610–625.
Coletti, F., Macchietto, S., and Elvassore, N., 2006. Mathematical modeling of three- dimensional cell cultures in perfusion bioreactors. Ind. Eng. Chem. Res. 45(24), 8158–8169.
Culture, J.E., 1974. A simple in vitro method for studies on chemotaxis. Proc. Soc. Exp. Biol. Med. 147(2), 471-474.
D’Alemida, F., 2002. Fast Tridiagonal System Solver. “http://www.mathworks.com/ matlabcentral/fileexchange/1359-fast-tridiagonal-system-solver/content/thomas.m".
DiMilla, P.A., Quinn, J.A., Albelda, S.M., and Lauffenburger, D.A., 1992. Measurement of individual cell migration parameters for human tissue cells. AIChE J. 38(7), 1092–1104.
Dunzendorfer, S., Kaser, A., Meierhofer, C., Tilg, H., and Wiedermann, C.J., 2000. Dendritic cell migration in different micropore filter assays. Immunol. Lett. 71(1), 5–11.
Entschladen, F., Drell IV, T.L., Lang, K., Masur, K., Palm, D., Bastian, P., Niggemann, B., and Zaenker, K.S., 2005. Analysis methods of human cell migration. Exp. Cell Res. 307(2), 418–426.
Feng, J.F., Liu, J., Zhang, X.Z., Zhang, L., Jiang, J.Y., Nolta, J., and Zhao, M., 2012. Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cell 30(2), 349–355.
Ford, R.M. and Lauffenbuger, D.A., 1991. Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients. Bull. Math. Biol. 53(5), 721–749.
Gardner, H., Broberg, A., Pozzi, A., Laato, M., and Heino, J., 1999. Absence of integrin α1β1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J. Cell. Sci. 112(3), 263–272.
Gebler, A., Zabel, O., and Seliger, B., 2012. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol. Med. 18(2), 128–134.
Gee, A.P., 1984. Advantages and limitations of methods for measuring cellular chemotaxis and chemokinesis. Mol. Cell. Biochem. 62(1), 5–11.
Gelman, R.A. and Piez, K.A., 1980. Collagen fibril formation in vitro. J. Biol. Chem. 255(17), 8098–8102.
Gill, J.S., Salafia, C.M., Grebenkov, D., Vvedensky, D.D., 2011. Modeling oxygen transport in human placental terminal villi. J. Theor. Biol. 291, 33–41.
Guo, Y., Hangoc G., Bian, H., Pelus, L.M., and Broxmeyera, H.E., 2005. SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cell 23(9), 1324–1332.
Harvath, L., Falk, W., and Leonard, E.J., 1980. Rapid quantitation of neutrophil chemotaxis: Use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly . J. Immunol. Methods 37(1), 39–45.
Horwitz, D.A. and Garrett, M.A., 1971. Use of leukocyte chemotaxis in vitro to assay mediators generated by immune reactions. I. Quantitation of mononuclear and polymorphonuclear leukocyte chemotaxis with polycarbonate (Nuclepore) filters. J. Immunol. 106(3), 649–655.
Janssens, P.M.W. and Van Driel, R., 1984. Dictyostelium discoideum cell membranes contain masked chemotactic receptors for cyclic AMP. FEBS Lett. 176(1), 245–249.
Jokinen, J., Dadu, E., Nykvist, P., Käpyla¨ , J., White, D.J., Ivaska, J., Vehviläinen, P., Reunanen, H., Larjava, H., Häkkinen, L., and Heino, J., 2004. Integrin-mediated cell adhesion to type I collagen fibrils. J. Biol. Chem. 279(30), 31956–31963.
Kaiser, J.P., Reinmannb, A., and Bruinink, A., 2006. The effect of topographic characteristics on cell migration velocity. Biomaterial 27(30), 5230–5241.
Keller, E.F. and Segel, L.A., 1970. Initiation of slime-mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415.
Klominek, J., Robért, K.H., and Sundqvist, K.G., 1993.Chemotaxis and haptotaxis of human malignant mesothelioma cells: Effects of fibronectin, laminin, type IV collagen, and an autocrine motility factor-like substance. Cancer Res. 53(18), 4376–4382.
Knapp, D.M., Tower, T.T., Tranquillo, R.T., and Barocas, V.H., 1999. Estimation of cell traction and migration in an isometric cell traction assay. AIChE J. 45(12), 2628–2640.
Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E., 1998. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147.
Lapidus, I.R. and Schiller, R., 1976. Model for the chemotactic response of a bacterial population. Biophy. J. 16(7), 779–789.
Lauffenburger, D.A., 1989. A simple model for the effects of receptor-mediated cell- substratum adhesion on cell migration. Chem. Eng. Sci. 44(9), 1903–1914.
Lauffenburger, D.A. and Aris, R., 1979. Measurement of leukocyte motility and chemotaxis parameters using a quantitative analysis of the under-agarose migration assay. Math. Biosci. 44(1–2), 121–138.
Lauffenburger, D.A. and Horwitz, A.F., 1996. Cell migration: A physically integrated molecular process. Cell 84(3), 359–369.
Lauffenburger, D.A. and Linderman, J.J., 1993. Receptors models for binding, trafficking, and signaling. New York: Oxford University Press. Chapter 6.
Lauffenburger, D.A., Rothman, C., and Zigmond, S.H., 1983. Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay. J. Immunol. 131(2), 940–947.
Lauffenburger, D.A. and Zigmond, S.H., 1981. Chemotactic factor concentration gradients in chemotaxis assay systems. J. Immunol. Methods 40(1), 45–60.
Lee, G.M. and Loeser, R.F., 1999. Cell surface receptors transmit sufficient force to bend collagen fibrils. Exp. Cell Res. 248(1), 294–305.
Leitinger, B., 2011. Transmembrane collagen receptors. Annu. Rev. Cell Dev. Biol. 27, 265–90.
Leitinger, B. and Hohenester, E., 2007. Mammalian collagen receptors. Matrix Biol. 26(3), 146–155.
Levy, L., Broad, S., Diekmann, D., Evans, R.D., and Watt, F.M., 2000. β1 integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. Mol. Biol. Cell 11(2), 453–466.
Li, L., and Jiang, J., 2011. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front. Med. 5(1), 33–39.
Liang, C.C., Park, A.Y., and Guan, J.L., 2007. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2(2), 329–333.
Lin, F., Nguyen, C.M.C., Wang, S.J., Saadi, W., Gross, S.P. and Jeon, N.L., 2004. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochem. Biophys. Res. Commun. 391(2), 576–581.
Liu, J., Wei, Y., Chen, Y., Xu, X., and Zhang, H., 2011. Differentiation of neural stem cells influences their chemotactic responses to vascular endothelial growth factor. J. Neurosci. Res. 89(8), 1173–1184.
Loeser, R.F., 2002. Integrins and cell signaling in chondrocytes. Biorheology 39(1-2), 119–124.
Lőster, K., Vőssmeyer, D., Werner Hofmann, W., Reutter, W., and Danker, K., 2001. α1 integrin cytoplasmic domain is involved in focal adhesion formation via association with intracellular proteins. Biochem. J. 356, 233–240.
Lu, K.K., Trcka, D., and Bendeck, M.P., 2011. Collagen stimulates discoidin domain receptor 1-mediated migration of smooth muscle cells through Src. Cardiovasc. Pathol. 20(2), 71–76.
McBride Jr, D.J., Choe, V., Shapiro, J.R., and Brodsky, B., 1997. Altered collagen structure in mouse tail tendon lacking the α2(I) chain. J. Mol. Biol. 270(2), 275-284.
Mihai, C., Iscru, D.F., Druhan, L.J., Elton, T.S., and Agarwal, G., 2006. Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1. J. Mol. Biol. 361(5), 864–876.
Owen, M.R. and Sherratt, J.A., 1997. Pattern formation and spatiotemporal irreuqlarity in a model for macrophage-tumour interactions. J. Theor. Biol. 189(1), 63–80.
Ozaki, Y, Nishimura, M., Sekiya, K., Suehiro, F., Kanawa, M., Nikawa, H., Hamada, T., and Kato, Y., 2007. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev. 16(1), 119–129.
Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., and Horwitz, A.F., 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616), 537–540.
Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., Cukierman, E., Matsumoto, K., and Yamada, K.M., 2005. A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170(5), 793–802.
Patankar, S.V., 1980. Numerical heat transfer and fluid flow. New York:McGraw-Hill.
Potdar, A.A., Lu, J., Jeon, J., Weaver, A.M., and Cummings, P.T., 2009. Bimodal analysis of mammary epithelial cell migration in two dimensions. Ann. Biomed. Eng. 37(1), 230–245.
Richardson, J.F. and Zaki, W.N., 1954. Sedimentation and fluidization: Part I. Chem. Eng. Res. Des. 32, 35–53.
Roper, S.N. and Steindler, D.A., 2012. Stem cells as a potential therapy for epilepsy. Exp. Neurol. In Press.
Rosen, G., 1976. Chemotactic transport theory for neutrophil leukocytes. J. Theor. Biol. 59(2), 371–380.
Rüster, B., Grace, B., Seitz, O., Seifried, E., and Henschler, R., 2005. Induction and detection of human mesenchymal stem cell migration in the 48-well reusable transwell assay. Stem Cell Dev. 14(2), 231–235.
Sagar, J., Chaib, B., Sales, K., Winslet, M., and Seifalian, A., 2007. Role of stem cells in cancer therapy and cancer stem cells: A review. Cancer Cell Int. 7(9), 1–11.
Sarkar, S., Bustard, B.L., Welter, J.F., and Baskaran, H., 2011. Combined experimental and mathematical approach for development of microfabrication -based cancer migration assay. Ann. Biomed. Eng. 39(9), 2346-2359.
Sati, L., Demir, A.Y., Sarikcioglu, L., and Demir, R., 2008. Arrangement of collagen fibers in human placental stem villi. Acta Histochem. 110(5), 371–379.
Sherratt, J.A., 1994. Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approximation to a detailed model. Bull. Math. Biol. 56(1), 129–146.
Sherratt, J.A., Sage, E.H., and Murray, J.D., 1993. Chemical control of eukaryotic cell movement: A new model. J. Theor. Biol. 162(1), 23–40.
Shimizu, M., Minakuchi, K., Kaji, S., and Koga, J., 1997. Chondrocyte migration to fibronectin, type I collagen, and type II collagen. Cell Struct. Funct. 22(3), 309–315.
Sieuwerts, A.M., Klijn, J.G.M., and Foekens, J.A., 1997. Assessment of the invasive potential of human gynecological tumor cell lines with the in vitro Boyden chamber assay: Influences of the ability of cells to migrate through the filter membrane. Clin. Exp. Metastasis 15(1), 53–62.
Silver, F.H. and Trelstad, R.L., 1980. Type I collagen in solution - Structure and properties of fibril fragments. J. Biol. Chem. 255, 9427–9433.
Smith, J.T., Elkin, J.T., and Reichert, W.M., 2006. Directed cell migration on fibronectin gradients: Effect of gradient slope. Exp. Cell Res. 312(13), 2424–2432.
Tanaka, N. and Fukuzawa, M., 2008. MYCN downregulates integrin α1 to promote invasion of human neuroblastoma cells. Int. J. Oncol. 33(4), 815–821.
Thibault, M.M., Hoemann, C.D., and Buschmann, M.D., 2007. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev. 16(3), 489–502.
Thomas, E.K., Nakamura, M., Wienke, D., Isacke, C.M., Pozzi, A., and Liang, P., 2005. Endo180 binds to the c-terminal region of type I collagen. J. Biol. Chem. 280(24), 22596–22605.
Viguet-Carrin, S., Garnero, P., and Delmas, P.D., 2006. The role of collagen in bone strength. Osteoporos. Int. 17(3), 319–336.
Wesselingh, J.A. and Krishna, R., 2000. Mass transfer in multi-component mixtures. Netherlands: Delft Univ. Press. pp. 137–143.
Wienke, D., MacFadyen, J.R., and Isacke, C.M., 2003. Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor. Mol. Biol. Cell 14(9), 3592–3604.
Wilkinson, P.C., 1996. Cell locomotion and chemotaxis: Basic concepts and methodological approaches. Methods. 10(1), 74–81.
Wright, D.G., Kirkpatrick, C.H., and Gallin, J.I., 1977. Effects of levamisole on normal and abnormal leukocyte locomotion. J. Clin. Invest. 59(5), 941–950.
Wu, C.C., You-Chen Chao, Y.C., Chen, C.N., Chien, S., Chen, Y.C., Chien, C.C., Chiu, J.J., and Yen, B.L., 2008. Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J. Biomech. 41(4), 813–821.
Yen, B.L., Chien, C.C., Chen, Y.C., Chen, J.T., Huang, J.S., Lee, F.K., and Huang, H.I., 2008. Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng. Part A. 14(1), 9–17.
Yen, B.L., Huang, H.I., Chien, C.C., Jui, H.Y., Ko, B.S., Yao, M., Shun, C.T., Yen, M.L., Lee, M.C., and Chen, Y.C., 2005. Isolation of multipotent cells from human term placenta. Stem Cell 23(1), 3–9.
Zhang, Z., LI, G. and Shi, B., 2006. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leather Technol. Chem. 90(23), 23–28.
Zicha, D., Dunn, G.A., and Brown, A.F., 1991. A new direct-viewing chemotaxis chamber. J.Cell Sci. 99(4), 769–775.
Zigmond, S.H., 1981. Consequences of chemotactic peptide receptor modulation for leukocyte orientation. J. Cell. Biol. 88(3), 644–647.
Zigmond, S.H. and Hirsch, J.G., 1973. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J. Exp. Med. 137(2), 387–410.
Zimmerli, W., Seligmann, B. and Gallin, J.I., 1986. Exudation primes human and guinea pig neutrophils for subsequent responsiveness to chemotactic peptide N-formylmethionylleucyl-phenylalanine and increases complement C3bi receptor expression. J. Clin. Invest. 77(3), 925–933.
湯尹良,2005。腸病毒71型和VP2蛋白之研究。成功大學分子醫學研究所,碩士論文。
蕭貫志,2009。博登量測器中軟骨細胞化學趨向性的模擬與分析。中央大學機械工程研究所,碩士論文。
行政院衛生署,2012。民國100年死因統計結果分析。行政院衛生署。
國家衛生研究院細胞庫。http://w3.nhri.org.tw/cellbank/c/c_1.htm。
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明