博碩士論文 943403025 詳細資訊


姓名 吳志庭(Chih-Ting Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
(Effects of Cu, Mg contents and heat treatment on tensile, thermal stability andwear properties of Al-14.5Si-Cu-Mg alloys)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究配製三種不同銅、鎂含量之Al-14.5Si-Cu-Mg合金,探討銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定和磨耗性質的影響。結果顯示低銅鎂比合金中含有文字形Al8Mg3FeSi6富鐵相;高銅鎂比合金則含有針狀β-Al5FeSi富鐵相,經T6熱處理後,前者之拉伸強度與伸長率皆較後者為佳,高銅鎂比合金中的針狀β-Al5FeSi6富鐵相和伴隨針狀β-Al5FeSi6富鐵相產生之縮孔皆是導致拉伸強度與伸長率下降之原因。
高銅高鎂合金因含較多質硬的Al2Cu與Al5Cu2Mg8Si6相,在鑄態合金中硬度最高,但經T6熱處理後,該合金硬度卻不如高銅低鎂合金,增加鎂含量雖可析出更多λ’(Al5Cu2Mg8Si6)強化相,但卻也減少了θ’(Al2Cu)強化相的析出,導致λ’和θ’總析出量降低,影響析出硬化的效果。經300℃x100h等溫熱處理後,λ’和θ’析出強化相轉變成λ和θ平衡相,導致T6熱處理合金硬度大幅降低,熱穩定性遠不如鑄態合金。此外,不論鑄態或T6熱處理合金經等溫熱處理後,高銅含量有較佳之硬度表現,高鎂含量則無顯著影響。
試片經等溫熱處理後進行磨耗試驗,在10N的荷重下,主要磨耗型式是研磨磨耗;在40N的荷重下,則呈現粘著磨耗,磨耗率隨著荷重增加而顯著上升,T6熱處理低銅低鎂合金磨耗率最高,而鑄態高銅高鎂合金之磨耗率最低,磨耗率隨著硬度增加而減少。增加銅含量可降低磨耗率,鑄態合金之抗磨耗性較T6熱處理合金為佳。
摘要(英) Three Al-14.5Si-Cu-Mg alloys with different copper and magnesium contents were prepared to investigate the effects of copper, magnesium contents and heat treatment on tensile, thermal stability and wear properties of Al-14.5Si-Cu-Mg alloys. The results indicated that the low copper to magnesium ratio alloy contained Al8Mg3FeSi6 and high copper to magnesium ratio alloy contained the acicular β-Al5FeSi. The tensile strength and elongation of the low copper to magnesium ratio alloy is superior to those of the high copper to magnesium ratio alloy. The presence of the acicular β-Al5FeSi and shrinkage porosity caused by acicular β-Al5FeSi in the high copper to magnesium ratio alloy were responsible for the reduction in tensile strength and elongation.
Due to its large amount of the hard Al2Cu and Al5Cu2Mg8Si6, the alloy with high copper and high magnesium contents had the highest hardness in as-cast condition. After T6 heat treatment, the hardness of the alloy which contained high copper and low magnesium contents was superior to that of the alloy which contained high copper and low magnesium contents. Adding more magnesium could increase the precipitation of λ’(Al5Cu2Mg8Si6) but it also lowered that of θ’(Al2Cu), decreasing the total precipitation of λ’ and θ’. The λ’ and θ’ strengthening precipitates converted to stable λ and θ phases led to a severe decrease in hardness following isothermal heat treatment at 300℃ for 100h. The thermal stability of the T6 heat-treated alloys was much worse than that of the as-cast alloys. In addition, increasing copper content could enhance the hardness of as-cast and T6 heat treated alloys after isothermal heat treatment. This result could not be obtained by increasing magnesium content.
The specimens were isothermally heat-treated prior to wear test. The type of wear was abrasive wear under 10N applied load and adhesive wear was observed under 40N applied load. The wear rate markedly increased with increasing applied load. The T6 heat-treated alloy with low copper and low magnesium contents had highest wear rate; the as-cast alloy with high copper and high magnesium contents had the lowest wear rate. The wear rate decreased with the increase in the hardness. Increasing copper content could lower wear rate. The wear resistance of the as-cast alloys was better than that of the T6 heat-treated alloys.
關鍵字(中) ★ 磨耗
★ 富鐵相
★ 拉伸性質
★ 過共晶
★ 熱處理
★ 銅鎂含量
★ 熱穩定性
關鍵字(英) ★ Cu and Mg contents
★ Tensile properties
★ Thermal stability
★ Wear
★ Iron-bearing phase
★ Heat treatment
★ Hypereutectic
論文目次 ABSTRACT (in Chinese) I
ABSTRACT (in English) II
ACKNOWLEDGMENT IV
CONTENTS V
TABLE CAPTIONS VIII
FIGURE CAPTIONS X
1.INTRODUCTION
1.1Background 1
1.2 Literature Survey 3
1.3 Motivation of the Present Study 6
2.THEORETICAL DEVELOPMENT
2.1 Characteristics of Precipitation
Hardened Aluminum alloys 15
2.2 Precipitation of Al-Si-Cu-Mg alloys 16
2.3 Intermetallic Compounds in Al-Si-Cu-Mg Alloy 17
2.4 Tensile Properties 18
2.5 Thermal Stability 19
2.6 Wear 19
3. EXPERIMENTAL PROCEDURE
3.1 Alloy Preparation and Casting 21
3.2 Heat Treatment 21
3.3 Metallography 22
3.4 SEM/EPMA 22
3.5 Differential Scanning Calorimetry 22
3.6 Electrical Conductivity 23
3.7 Hardness 23
3.8 Tensile Testing 23
3.9 Thermal stability Testing 23
3.10 Wear Testing 24
4. MICROSTRUCTURE ANALYSIS
4.1 Microstructure 31
4.2 EPMA 33
4.3 Differential Scanning Calorimetry 36
4.4 Electrical Conductivity 37
4.5 Summary 39
5.TENSILE PROPERTIES
5.1 Tensile Properties 51
5.2 Fracture Surface Observations 52
5.3 Summary 55
6. THERMAL STABILITY
6.1 As-cast alloys 65
6.2 T6 heat-treated alloys 67
6.3 Summary 71
7. WEAR PROPERTIES
7.1 As-Cast Alloys 83
7.2 T6 Heat-Treated Alloys 84
7.3 Summary 87
8. CONCLUSIONS 95
9. SUGGESTED FUTURE WORKS 97
10. REFERENCES 98
11. APPENDIX
Effects of Cu, Mg contents and heat treatment
on tensile, thermal stability and wear properties
of Al-14.5Si-Cu-Mg alloys (in Chinese) 109
參考文獻 [1] J.R. Davids, ASM Specialty Handbook, ASM International, Metals Park, OH, USA, (1993)
[2] J.G. Kaufman and E.L. Rooy, Aluminum Alloy Castings-Properties, Processing, and Application, ASM International, Metals Park, OH, USA, (2004)
[3] ASM Handbook, Vol.2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM, The Materials Information Society, USA, (1990)
[4] K.T. Kashyap, S. Murali, K.S. Raman and K.S.S. Murthy, “Casting and heat treatment variables of Al–7Si–Mg alloy”, Materials Science and Technology, Vol. 9, pp.189–203. (1993)
[5] F. Meydaneri, B. Saatci, M. Ozdemir, ”Thermal conductivities of solid and liquid phases for pure Al, pure Sn and their binary alloys”, Fluid Phase Equilibria, Vol. 298, pp.97-105, (2010)
[6] S. Murali, S. Muthukaruppan, K.S. Raman, K.S.S. Murthy. “Stir cast and extrude Al–7Si-0.3Mg alloy containing iron and beryllium”, Materials Science and Technology, Vol. 13, pp.337–342. (1997)
[7] B.K. Prasad. “Structure-property related changes in hypoeutectic Al–Si alloys induced by solutionizing”, Materials Transactions, JIM, Vol. 34, PP.873–888. (1994)
[8] R.K. Mahanti, K. Lal, A.N. Sinha and C.S. Shivaramakrishanan, “A novel technique for hyper eutectic aluminium–silicon alloy melt treatment”, Materials Transactions, JIM, Vol. 34, PP.1207-1211. (1993)
[9] W.R. Os´orio, L.R. Garcia, P.R. Goulart, A. Garcia, “Effects of eutectic modification and T4 heat treatment on mechanical properties and corrosion resistance of an Al–9 wt%Si casting alloy”, Materials Chemistry and Physics, Vol. 106, pp.343–349. (2007)
[10] Q.G. Wang, “Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357”, Metallurgical and. Materials Transactions A, Vol. 34A, pp.2887-2899. (2003)
[11] T. Wei, F. Yan and J. Tian, “Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy”, Journal of Alloys and Compounds, Vol. 389, pp. 169-176. (2005)
[12] J.E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM, Metals Park, OH, (1984).
[13] K.G. Basavakumar, P.G. Mukunda, and M. Chakraborty, “Impact toughness in Al–12Si and Al–12Si–3Cu cast alloys—Part 1: Effect of process variables and microstructure”, International Journal of Impact Engineering, Vol. 35, pp.199-205. (2008)
[14] William W. Scott, Jr, Binary Alloy Phase Diagram 1, ASM Metal Park, OH, pp.165. (1986)
[15] R. Shivanath, P.K. Sengupta and T.S. Eyre, “Wear of aluminum-silicon alloy”, Br. Foundrymen, Vol. 79, pp.349-356. (1977)
[16] J. Clarke and A.D. Sarkar, “Wear characteristics of as-cast binary aluminium-silicon alloys”, Wear, Vol. 54, pp.7–16. (1979)
[17] K.M. Jasim and E.S. Dwarakadasa, “Wear in Al-Si alloys under dry sliding conditions”, Wear, Vol. 119, pp.119-130. (1987)
[18] J.B. Andrews, M.V. Seneviratne, K.P. Zier and T.R. Jett, “Wear of Materials: International Conference on Wear of Materials”, K. Ludema (Ed.), pp.180-185. (1985)
[19] D.K. Dwivedi, “Wear behaviour of cast hypereutectic aluminum silicon alloys”, Materials and Design. Vol. 27, pp.610-616. (2006)
[20] S. Linguard, K.H. Fu and K.H. Chueng, “Some observations on the wear of aluminum rubbing on steel”, Wear, Vol. 96, pp.75-84. (1984)
[21] N. Saheb, T Laoui, A.R. Daud, M. Harun, S. Radiman and R. Yahaya, “Influence of Ti addition on wear properties of Al-Si eutectic alloys”, Wear, Vol. 249, pp.656-662. (2001)
[22] M. Harun, I.A. Talib and A.R. Daud, “Effect of element addition on wear properties of eutectic aluminum-silicon alloys”, Wear, Vol. 194, pp.54-59. (1996)
[23] A.Dasgupta, and S.K. Bose, “Effect of copper on the tribological properties of Al-Si base alloys”, Journal of Materials Science Letters, Vol. 14, pp.1661-1663. (1995)
[24] F.H. Samuel and P. Quellet, “Effect of Mg and Sr additions on the formation of intermetallics in Al-6Si-3.5Cu-(0.45)to(0.8)Fe 319-type alloy”, Metallurgical and. Materials Transactions A, Vol. 29A, pp.2871-2884. (1998)
[25] F.H. Aamuel and A.M. Aamuel, “Modification of iron intermetallics by magnesium and strontium in Al-Si alloys”, International Journal of Cast Metals Research, Vol.10, pp.147-157. (1997)
[26] L. Lasa, J.M. Rodrigues-Ibabe, “Characterization of the dissolution of the Al2Cu phase in two Al-Si-Cu-Mg casting alloys using calorimetry”, Materials Characterization, Vol. 48, pp.371-378. (2002)
[27] N. Tenekedjiev, H. Mulazimoglu, B. Closset and J. Gruzleski: Microstructures and thermal analysis of strontium-treated aluminum-silicon alloys; Des Plaines, IL, American Foundry Society Inc., (1995).
[28] G. Wang, X. Bain, W. Wang and J. Zhang, “Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys”, Materials. Letters. Vol. 57, pp.4083-4087. (2003)
[29] H.G. Kang, M. Kida, and H. Miyahara, “Age-hardening characteristics of Al-Si-Cu-base cast alloys”, AFS Transactions, Vol. 107, pp.507-515. (1999)
[30] Y.J. Li, S. Brusethaug, and A. Olsen, “Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment”, Script Materialia, Vol. 54, pp.99-103. (2006)
[31] G. Wang, Q. Sun, L. Feng, L. Hui and C. Jing, “Influence of Cu content on ageing behavior of AlSiMgCu cast alloys”, Materials and Design, Vol. 28, pp.1001-1005. (2007)
[32] J. Man, L. Jing and S.G. Jie, “The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy”, Journal of Alloys and Compounds, Vol. 304, pp.521-526. (2006)
[33] L. Wang, M. Malhlouf and D. Apelian, “Aluminium die casting alloys: alloy composition, microstructure, and properties/performance relationship”, International Materials Review, Vol. 40, pp.221-238. (1995)
[34] A.M. Samuel and F.H. Samuel, “Observations on the formation of β-Al5FeSi phase in 319 type Al-Si alloys”. Journal of Materials Science, Vol. 31, pp.5529-5539. (1996)
[35] P.S. Wang, S.L. Lee, and J.C. Lin, “Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace beryllium”, Materials Research. Vol. 15, pp.2027-2035. (2000)
[36] P.S. Wang, S.L. Lee, and J.C. Lin, “Effects of Be and nonequilibrium heat treatment on mechanical properties of 319.0 alloys with 1.0% Fe”, Materials Science and Technology, Vol. 20, pp.539-546. (2004)
[37] S.N. Yie, S.L. Lee, Y.H. Lin and J.C. Lin, “Mechanical properties of Al-11%Si casting alloys containing trace Be and Sr”, Materials Transactions, JIM. Vol. 40, pp.294-300. (1999)
[38] Y.H. Tan, S.L. Lee and Y.L. Lin, “Effects of Be and Fe content on plane strain fracture toughness in A357 alloys”, Metallurgical and. Materials Transactions A, Vol. 26A, pp.2937-2945. (1995)
[39] Y.H. Tan, S.L. Lee and H.Y. Lin, “Effects of beryllium on fatigue crack propagation of A357 alloys containing iron”, International Journal of Fatigue, Vol. 18, pp.137-147. (1996)
[40] Y.H. Tan, S.L. Lee and Y.L. Lin, Effects of Be and Fe additions on the microstructure and mechanical properties of A357.0 alloys. Metallurgical and. Materials Transactions A, Vol. 26A, pp.1195-1205. (1995)
[41] P.N. Crepeau, “Effect of iron in Al-Si casting alloys: a critical review”, AFS Transactions, Vol. 103, pp.361-365. (1995)
[42] F.H. Samuel and A.M. Samuel, “Modification of iron intermetallics by magnesium and strontium in Al-Si alloys”, International Journal of Cast Metals Research, Vol. 10, pp.147–157. (1997)
[43] J.Y. Hwang, H.W. Doty, and M.J. Kaufman, “The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys”, Materials Science and Engineering A, Vol. 488, pp.496-504. (2008)
[44] A. Hekmat-Ardkan, X. Liu, F. Ajersch and X. Chen, “Wear behaviour of hypereutectic Al-Si-Cu-Mg casting alloys with variable Mg contents”, Wear, Vol. 269, pp.684-692. (2010)
[45] L.F. Mondolfo, Aluminum alloys: structure and properties, London: Butterworth, (1976).
[46] R.M. Gomes, T. Sato and H. Tezuka, “Precipitation strengthening and mechanical properties of hypereutectic P/M Al-Si-Cu-Mg alloys containing Fe and Ni”, Materials Science Forum, pp.789-794. (1996)
[47] M. Murayama, K. Hono, M. Saga and M. Kikushi, ”Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys”, Materials Science and Engineering A, Vol. 250, pp.127-132. (1998)
[48] K. Matsuda, D. Teguri, Y. Uetani, T. Ssto and S. Ikeno, “Cu-segregation at the Q’/ Al interface in Al-Mg-Si-Cu alloy”, Scripta Materialia, Vol. 47, pp.833-837. (2002)
[49] I.A. Lopez, C.M. Zepeda , J.G.G. Reyes, A.M. Flores, J.S. Rodriguez and L.B. Gomez, “TEM microstructural characterization of melt-spun aged Al-6Si-3Cu-xMg alloys”, Materials Characterization. Vol. 58, pp.509-518. (2007)
[50] C.H. Cáceres, M.B. Djurdjevic, T. J. Stockwell and J.H. Sokolowski, “The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys”, Scripta Materialia, Vol. 40, pp.631-637. (1999)
[51] Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran and S. Valtierra, “Effect of alloying elements on the segregation and dissolution of Al2Cu phase in Al-Si-Cu 319 alloys”, Journal of Materials Science, Vol. 38, pp.1203-1218. (2003)
[52] I. Alfonso, C. Maldonado, G. Gonzalez and A. Bedolla, “Effect of Mg content and solution treatmenton the microstructure of Al-Si-Cu-Mg alloys”, Journal of Materials Science, Vol. 41, pp.1945–1952. (2006)
[53] S. Shivkumar, S.Ricci, Jr. and D.Apelian, “Influence of solution parameters and simplified supersaturation treatments on tensile properties of A356 alloy”, AFS Transactions, Vol. 98, pp.913-922. (1990)
[54] J. E. Hatch, Aluminum Properties and Physical Metallurgy, London, Butterwordths and Co. Ltd., pp.143-148. (1976)
[55] H.G. Kang, M. Kida and H. Miyahara, “Age-hardening characteristics of Al-Si-Cu-base cast alloys”, AFS Transactions, Vol. 107, pp.507-515. (1999)
[56] C.H. Cáceres, I.L. Svensson and J.A. Taylor, “Strength–ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 Temper”, International Journal of Cast Metals Research, Vol. 15, pp.531-543. (2003)
[57] L. Pedersen and L. Arnberg, “The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys”, Metallurgical and. Materials Transactions A, Vol. 32A,.pp.525-532. (2001)
[58] Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra and H. W. Doty, “Parameters controlling the performance of A319-type alloys, Part I. Tensile properties”, Materials Science and Engineering A, Vol. 367, pp.96-110. (2004)
[59] Janusz Król, “The precipitation strengthening of directionally solidified Al Si Cu alloys”, Materials Science and Engineering A, Vol. A234-236, pp.169-172. (1997)
[60] Z. Ma, A.M. Samuel and F.H. Samuel, “Effect of iron and cooling rate on tensile properties of B319.2 alloys in non-modified and Sr-modified conditions”, AFS transactions, pp131-140. (2004)
[61] S. Gowri and F.H. Samuel, “Effect of alloying elements on the solidification characteristics and microstructure of Al-Si-Cu-Mg-Fe 380 alloy”, Metallurgical and. Materials Transactions A, Vol. 25 A, pp.437-448. (1994)
[62] A.M. Samuel, A. Pennorst, C. Villeneuve, F.H. Samuel, H.W. Doty and S. Valtierra, “Effect of cooling rate on Sr modification on porosity and Fe-intermetallics formation in Al-6.5%Si-3.5%Cu-Fe alloys”, International Journal of Cast Metals Research, Vol. 13, pp.231-253. (2000)
[63] L. Wang, D. Apelian, M. Makhlouf, “ Iron-Bearing compounds in Al-Si Die-casting alloys: Morphology and conditions under which they form”, AFS Transactions, 99-146, pp. 231-238. (1999)
[64] G. Gustafsson, T. Thorvaldsson and G.L. Dunlo, ”The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys”, Metallurgical and. Materials Transactions A, 17 A, pp.45-52. (1986)
[65] S.G. Shabestari, J.E. Gruzleski, “ The effect of solidification condition and chemistry on the formation and morphology of complex intermetallic compounds in aluminium-silicon alloys”, Cast Metals, Vol. 6, pp.217-224. (1994)
[66] A. Pennors, A.M. Samuel, F.H. Samuel and H.W. Doty, "Precipitation of β-Al5FeSi iron intermetallic in Al-6%Si-3.5%Cu (319) type alloys: Role of Sr and P", AFS Transactions, vol. 106, pp.251-264. (1998)
[67] S.K. Tang and T. Sritharan, “Morphology of Al5FeSi intermetallic in Al-7Si alloy casting”, Materials Science and Technology, Vol. 14, pp.738-742. (1998)
[68] X.P. Niu, B.H. Hu and S.W. Hao, ‘Effect of iron on the microstructure and mechanical properties of Al die-casting alloys”, Journal of Materials Science Letters, Vol. 17, pp.1727-1729. (1998)
[69] L. Lu and A.K. Dahle, “Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys”, Metallurgical and. Materials Transactions A, Vol. 36A, pp.819-835. (2005)
[70] P.S. Mohanty, F.H. Samuel, J.E. Gruzleski, “Experimental study based on pore nucleation by inclusions in aluminium castings”, AFS Transactions, 104, pp.555-564, (1995)
[71] J.A Taylor, G.B. Schaffer, and D.H. StJohn, “The role of iron in the formation of porosity in Al-Si-Cu-based casting alloys: Part 1. Initial experimental observations”, Metallurgical and. Materials Transactions A, Vol. 30A, pp.1643-1650. (1999)
[72] J.A. Taylor, G.B. Schaffer and D.H. StJohn, “The role of iron in the formation of porosity in Al-Si-Cu-based casting alloys: Part II. A phase-diagram approach”, Metallurgical and. Materials Transactions A, Vol. 30A, pp.1651-1655. (1999)
[73] J.A Taylor, G.B. Schaffer, and D.H. StJohn, “The role of iron in the formation of porosity in Al-Si-Cu-based casting alloys: Part III. A microstructural model”, Metallurgical and. Materials Transactions A, Vol. 30A, pp.1657-1662. (1999)
[74] N. Roy, A.M. Samuel and F.H. Samuel, “Porosity formation in Al-9Si-3Cu alloy systems: metallographic observations”, Metallurgical and. Materials Transactions A, Vol. 27A, pp.415-429. (1996)
[75] A.M. Samuel, F.H. Samuel, C. Villeneuve, F.H. Samuel, H.W. Doty and S. Valtierra, “Effect of trace elements on Al5FeSi characteristics, porosity and tensile properties in Al-Si-Cu (319) cast alloys”, International Journal of Cast Metals Research, Vol. 14, pp.97-120. (2001)
[76] G.A. Edwards, G.K. Sigworth, C.H. Cáceres, D.H. StJohn, and J. Barresi, “Microporosity formation in Al-Si-Cu-Mg casting alloys”, AFS Transactions, Vol. 105, pp.809-818. (1997)
[77] C. Tian, J. Law, J. Van der Touw, M. Murray, J.Y. Yao, D. Graham and D. StJohn, “Effect of melt cleanliness on the formation of porosity defects in automotive aluminium high pressure die castings”, Journal of. Materials Processing Technology, Vol. 122, pp.82-93. (2002)
[78] K.H.Z. Gahr, “Microstructure and wear of materials”, Chapter 4 Classification of wear process, Elsevier Science Publisher, Amsterdam, The Netherlands, pp.80-131. (1987)
[79] Metals Handbook Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM. Metals Park, OH, USA, V2 (1992).
[80] ASTM B557M-81, ASTM, Philadelphia, PA, (1991)
[81] S. Imurai, J. Kajornchaiyakul, C. Thanachayanont, T.H. Pearce and T. Chairuangsri, “Age hardening and precipitation behavior of an experimental cast Al-Mg-Si alloy treated by T6 and T6I6 heat treatments”, Chiang Mai Journal of Science. Vol. 37, pp.269-281. (2010)
[82] E.A. Elsharkawi, E. Samuel, A.M. Samuel and F. H. Samuel, “Effects of Mg, Fe, Be additions and solution heat treatment on the π-AlMgFeSi iron intermetallic phase in Al–7Si–Mg alloy”, Journal of Materials Science, Vol. 45, pp.1528-1539. (2010)
[83] M. Dash and M. Makhlouf, “Effect of key alloying elements on the feeding characteristics of aluminum–silicon casting alloys”, Journal of light metals, Vol. 1, pp.251-165. (2001)
[84] M. Abdulwahab, I.A. Madugu, S.A. Yaro, S.B. Hassan and A.P.I. Popoola, “Effects of multiple-step thermal ageing treatment on the hardness characteristics of A356.0-type Al–Si–Mg alloy”, Materials and Design, Vol. 32, pp.1159-1166. (2011)
[85] E. Rincona, H.F. Lopezb, M.M. Cisnerosa and H. Manchac, “Temperature effects on the tensile properties of cast and heat treated aluminum alloy A319”, Materials Science and Engineering. A, Vol. 519, pp.128–140. (2009)
[86] R.A. Jeniski, B. Thanaboonsombut and T.H. Sanders, “The effect of iron and manganese on the recrystallization behavior of hot-rolled and solution heat treated aluminumalloy 6013”. Metallurgical and. Materials Transactions A, Vol. 27A, pp.19–27. (1996)
[87] Z. Ma, E. Samuel, A.M.A. Mohamed, A.M. Samuel, F.H. Samuel and H.W. Doty, “Influence of aging treatments and alloying additives on the hardness of Al–11Si–2.5Cu–Mg alloys”, Materials and Design, Vol. 31, pp.3791-3803. (2010)
[88] H.A. Alireza and A. Frank, “Thermodynamic evaluation of hypereutectic Al–Si (A390) alloy with addition of Mg”, Acta Materialia, Vol. 58, pp.3422-3428. (2010)
[89] F.H. Samuel and A.M. Samuel, “Decomposition of Fe-intermetallics in Sr-modified cast 6xxx type aluminum alloys for automotive skin”, Metallurgical and. Materials Transactions A, Vol. 32A, pp.2061-2075. (2001)
[90] D. Apelian, S. Shivkumar, G. Sigworth, ”Fundmental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Transaction, V0l. 97, pp.727-742. (1989),
[91] S.K. Panigrahi, R. Jayaganthan, V. Pancholi and M. Gupta, “A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy”, Materials Chemistry and Physics, Vol. 122, pp.188-193. (2010)
[92] A. Gaber, M.A. Gaffar, M.S. Mostafa, and E.F. Abo Zeid, “Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys”, Journal of Alloys and Compounds, Vol. 429, pp.167–175. (2007)
[93] S.F. Fang, M.P. Wang, and M. Song, “An approach for the aging process optimization of Al–Zn–Mg–Cu series alloys”, Material and Design, Vol. 30, pp.2460-2467. (2009)
[94] M.H. Mulazimoglu, R.A.L. Drew and J.E.Gruzelski, “Electrical conductivity of aluminum-rich Al-Si-Mg alloys”, Journal of Materials Science Letters Vol. 8, pp.297-300. (1989)
[95] A. Hekmat-Ardakan, Xichun Liu, Frank Ajersch and X.G. Chen, “Wear behaviour of hypereutectic Al-17.0Si-4.5Cu-Mg casting alloys with variable Mg contents”, Wear Vol. 269, pp.684-692. (2010)
[96] O.EI Sebaie, A.M. Samuel, F.H. Samuel and H.W. Doty, “The effects of mischmetal, cooling rate and heat treatment on the hardness of A319.1, a356.2 and A413.1 Al-Si casting alloys”, Materials Science and Engineering. A, Vol. 486, pp.241-252. (2008)
[97] M.M. Haque and A. Sharif, “Study on wear properties of aluminium-silicon piston alloy”, Journal of. Materials Processing Technology, Vol. 118, pp.69–73. (2001)
[98] B.K. Prasad, K. Venkateswarlu, O.P. Modi, A.K. Jha, R. Dasgupta and A.H. Yegneswaran, “Sliding wear behaviour of some Al–Si alloys: role of shape and size of silicon particles and testing conditions”, Metallurgical and. Materials Transactions A, Vol. 29A, pp.2747–2752. (1998)
[99] A. Somi Reddy, B.S. Murthy and S.K. Biswas, “Wear and seizure of binary Al–Si alloys”, Wear, Vol. 171, pp.115–127. (1994)
[100] A. Somi Reddy, B.N. Pramila Bai, K.S.S. Murthy and S.K. Biswas, “Mechanism of seizure of aluminium–silicon alloys under dry sliding against steel”, Wear, Vol. 181, pp.658–667. (1995)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2011-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡