博碩士論文 943404004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.227.3.146
姓名 李松泉(Sung-chuan Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以矽氧烷化合物製備溶膠-凝膠分子拓印高分子與其性質之研究
(Studies on the Preparation and Properties of Sol-Gel Molecularly Imprinted Polymerbased on Siloxanes)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是利用矽氧烷化合物(siloxanes)經由溶膠-凝膠程序(sol-gel process)製備一系列具有磺胺劑(sulfonamides)辨識效果之分子拓印高分子(molecularly imprinted polymers, MIPs),並有系統的研究分子拓印高分子的各種不同製備條件與其合成步驟,且進一步的探討分子拓印高分子的各種性質和孔洞特性。
本論文包含三個部份各別加以討論,第一部份主要以四甲氧基矽烷(tetramethoxysilane, TMOS)和一甲基三甲氧基矽烷(methyltrimethoxysilane, MTMOS)製備具有磺胺類辨識效果之溶膠-凝膠分子拓印高分子。並利用高效能液相層析儀偵測模板分子磺胺二甲嘧啶(sulfamethazine, SMZ)與其相似物磺胺甲噁唑(sulfamethoxazole, SMO)在不同酸鹼值下的吸附量與選擇率。探討其分子拓印高分子的製備條件,不同的R值、不同酸鹼值的競爭吸附、不同的鍛燒溫度以及不同TMOS 和MTMOS的莫爾分率。由實驗結果顯示,當競爭吸附水溶液在pH=7.4測得的吸附量會比在pH=4.6時高,且第二階段鍛燒溫度控制在375°C,會得到較高的選擇率。當在最佳的製備條件下,分子拓印高分子的選擇率會比非拓印高分子還要大約多六倍。
第二部份主要利用一步驟(single-step)溶膠-凝膠法製備一系列以四乙氧基矽烷(tetraethoxysilane, TEOS)為主體,具有磺胺類辨識效果之分子拓印高分子。探討其分子拓印高分子的製備條件,不同的R值、不同酸鹼值的競爭吸附和各種的鍛燒的程序。由實驗結果顯示,當競爭吸附水溶液在pH=7.4測得的選擇率會比在pH=4.6時高,當鍛燒溫度提升,且鍛燒時間增加,模板分子的選擇率也會隨之增加。在最佳的製備條件下,分子拓印高分子的辨識效果會比非拓印高分子高大約七倍。
第三部分主要探討以四乙氧基矽烷(tetraethoxysilane, TEOS)為主體,利用二步驟(two-step)溶膠-凝膠法製備具有磺胺類辨識效果之分子拓印高分子。並討論分子拓印高分子的製備條件,不同的吸附時間、不同酸鹼值的競爭吸附、氨水的添加量和各種的鍛燒的程序。實驗結果顯示,當競爭吸附水溶液在pH=7.4測得的吸附量和選擇率,皆會比在pH=4.6時高。且當鍛燒時間增加,模板分子的吸附量會降低但是選擇率會增加。在最佳的製備條件下,分子拓印高分子的辨識效果會比非拓印高分子大約多八倍。
摘要(英) The main propose of this dissertation is to prepare a series of the molecularly imprinted polymers (MIPs) based on siloxanes for recognized sulfonamide by sol-gel process and to investigate systematically their preparation conditions and the various synthesis procedures. Furthermore, the fundamental properties and the pore properties were also studied.
This dissertation contains three parts as follows: in first part, the sol-gel molecularly imprinted polymers based on tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMOS) for recognized sulfonamides were prepared. The MIP’s preparation conditions includes, the H2O/Si molar ratios (R), pH value of competition solution, calcination temperature, and the TMOS and MTMOS molar fractions are discussed. Adsorption and selectivity in different pH solutions were determined by competition experiments between the MIP template (sulfamethazine, SMZ) and the analogue (sulfamethoxazole, SMO) using HPLC. The results showed that the selectivity of the competition solution with pH=7.4 was higher than those with pH=4.6. In addition, the second stage temperature of calcination, which was carried out at 375°C, was obtained high selectivity. Moreover, the selectivity of the MIP (21.8) was approximately six times greater than the non-imprinted polymer (3.85) under the optimum preparation conditions.
In second part, the synthesis of a molecularly imprinted polymer (MIP) composed of tetraethoxysilane (TEOS) for recognized sulfonamides using a single-step sol-gel process has been developed. The MIP’s preparation conditions includes, the H2O/Si molar ratios (R), pH value of competition solution, and the calcination process are discussed. The results showed that the selectivity of the competition solution with pH=7.4 was higher than those with pH=4.6. In addition, the selectivity of SMZ increased as the calcination time and the calcination temperatures were increased. Moreover, the selectivity of the MIP (56.2) was approximately seven times greater than the non-imprinted polymer (8.32) under the optimum preparation condition.
In third part, the synthesis of molecularly imprinted polymer (MIP) composed of tetraethoxysilane (TEOS) for recognized sulfonamides using a two-step sol-gel process was investigated. The MIP’s preparation conditions such as, the various adsorption time intervals, the amount of NH4OH and the calcination temperature process are discussed. The results showed that the adsorption and selectivity of the competition solution with pH=7.4 were higher than those with pH=4.6. In addition, the adsorption of SMZ decreased but its selectivity increased while the calcination time was increased. Moreover, the selectivity of the MIP (51.3) was approximately eight times greater than the non-imprinted polymer (6.55) under the optimum preparation condition.
關鍵字(中) ★ 磺胺劑
★ 選擇率
★ 溶膠-凝膠
★ 分子拓印高分子
★ 高效能液相層析儀
關鍵字(英) ★ sol-gel
★ molecularly imprinted polymer
★ sulfonamide
★ HPLC
★ selectivity
論文目次 ABSTRACT (in Chinese) ----------------------------------- i
ABSTRACT (in English) --------------------------------- iii
ACKNOWLEDGEMENT ---------------------------------------- v
CONTENTS ---------------------------------------------- vi
LIST OF FIGURES ---------------------------------------- x
LIST OF TABLES ---------------------------------------- xii
LIST OF SYMBOLS -------------------------------------- xiv
CHAPTER 1 INTRODUCTION ---------------------------------- 1
1-1 Molecularly Imprinted Polymer ----------------------- 1
1-2 Sol-Gel Process ------------------------------------- 7
1-3 Templates and Analogues ---------------------------- 14
CHAPTER 2
Studies on the Preparation and Properties of Sol-Gel Molecularly Imprinted Polymer Based on Tetramethoxysilane and Methyltrimethoxysilane for Recognized Sulfonamides -------------------------------- 16
2-1 INTRODUCTION --------------------------------------- 16
2-2 EXPERIMENTAL --------------------------------------- 18
2-2-1 Materials ---------------------------------------- 18
2-2-2 Preparation of Sol-Gel Molecularly Imprinted Polymers (MIPs) ---------------------------------------- 20
2-2-3 High-Performance Liquid Chromatography (HPLC) analysis of MIP ---------------------------------------- 22
2-2-4 Fourier Transform Infrared Spectroscopy (FTIR) analysis of the MIP ------------------------------------ 23
2-2-5 Accelerated Surface Area and Porosimetry (ASAP)--- 23
2-3 RESULTS AND DISCUSSION ----------------------------- 24
2-3-1 Mechanism of the sol-gel molecularly imprinted polymer ------------------------------------------------ 24
2-3-2 Effect of the H2O/Si molar ratios (R) on MIP ----- 26
2-3-3 Effect of competition experiment pH on MIP ------- 30
2-3-4 Effect of the calcination temperature processes on MIP ---------------------------------------------------- 33
2-3-5 Effect of the TMOS and MTMOS molar fractions on MIP---------------------------------------------------------- 38
2-3-6 Effect of reaction temperature on MIP ------------ 41
2-3-7 Effect of imprint (MIP) and non-imprint (NIP) ---- 43
2-4 CONCLUSIONS ---------------------------------------- 45
CHAPTER 3
Studies on the Preparation and Properties of Sol-Gel Molecularly Imprinted Polymer Based on Tetraethoxysilane by Single-Step Reaction for Recognized Sulfonamides ---- 46
3-1 INTRODUCTION --------------------------------------- 46
3-2 EXPERIMENTAL --------------------------------------- 48
3-2-1 Materials ---------------------------------------- 48
3-2-2 Preparation of Sol-Gel Molecularly Imprinted Polymers (MIPs) ---------------------------------------- 50
3-2-3 High-Performance Liquid Chromatography (HPLC) analysis of MIP ---------------------------------------- 52
3-2-4 Accelerated Surface Area and Porosimetry (ASAP)--- 53
3-2-5 Thermogravimetric Analysis (TGA) of MIP ---------- 53
3-3 RESULTS AND DISCUSSION ----------------------------- 54
3-3-1 Mechanism of the sol-gel molecularly imprinted polymer ------------------------------------------------ 54
3-3-2 Effect of the H2O/Si molar ratios (R) on MIP ----- 56
3-3-3 Effect of competition experiment pH on MIP ------- 60
3-3-4 Effect of the calcination temperature on MIP ----- 63
3-3-5 Effect of the calcination time on MIP ------------ 70
3-3-6 Effect of imprint (MIP) and non-imprint (NIP) ---- 68
3-4 CONCLUSIONS ---------------------------------------- 73
CHAPTER 4
Studies on the Preparation and Properties of Sol-Gel Molecularly Imprinted Polymer Based on Tetraethoxysilane by Two-Step Reaction for Recognized Sulfonamides ------- 74
4-1 INTRODUCTION --------------------------------------- 74
4-2 EXPERIMENTAL --------------------------------------- 76
4-2-1 Materials ---------------------------------------- 76
4-2-2 Preparation of Sol-Gel Molecularly Imprinted Polymers (MIPs) ---------------------------------------- 78
4-2-3 High-Performance Liquid Chromatography (HPLC) analysis of MIP ---------------------------------------- 80
4-2-4 Thermogravimetric Analysis (TGA) of MIP ---------- 81
4-2-5 Accelerated Surface Area and Porosimetry (ASAP)--- 81
4-3 RESULTS AND DISCUSSION ----------------------------- 82
4-3-1 Preparation of the sol-gel molecularly imprinted polymer ------------------------------------------------ 82
4-3-2 Effect of adsorption time on MIP ----------------- 86
4-3-3 Effect of the competition experiment pH on MIP --- 88
4-3-4 Effect of the calcination temperature on MIP ----- 91
4-3-5 Effect of the calcination time on MIP ------------ 95
4-4 CONCLUSIONS --------------------------------------- 101
CHAPTER 5
FINAL CONCLUSIONS ------------------------------------- 102
REFERENCES -------------------------------------------- 105
參考文獻 [1] G. Wulff, "Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates - a Way Towards Artificial Antibodies," Angewandte Chemie-International Edition in English, vol. 34, pp. 1812-1832, Sep 15 1995.
[2] K. Mosbach and O. Ramstrom, "The emerging technique of molecular imprinting and its future impact on biotechnology," Bio-Technology, vol. 14, pp. 163-170, Feb 1996.
[3] N. Perez-Moral and A. G. Mayes, "Comparative study of imprinted polymer particles prepared by different polymerisation methods," Analytica Chimica Acta, vol. 504, pp. 15-21, Feb 16 2004.
[4] E. Busi, R. Basosi, F. Ponticelli, and M. Olivucci, "An innovative approach to the design of plastic antibodies: molecular imprinting via a non-polar transition state analogue," Journal of Molecular Catalysis a-Chemical, vol. 217, pp. 31-36, Aug 3 2004.
[5] H. Y. Yan and K. H. Row, "Characteristic and synthetic approach of molecularly imprinted polymer," International Journal of Molecular Sciences, vol. 7, pp. 155-178, May-Jun 2006.
[6] K. Haupt and K. Mosbach, "Plastic antibodies: developments and applications," Trends in Biotechnology, vol. 16, pp. 468-475, Nov 1998.
[7] P. A. G. Cormack and K. Mosbach, "Molecular imprinting: recent developments and the road ahead," Reactive & Functional Polymers, vol. 41, pp. 115-124, Jul 15 1999.
[8] R. S. Gill, M. Marquez, and G. Larsen, "Molecular imprinting of a cellulose/silica composite with caffeine and its characterization," Microporous and Mesoporous Materials, vol. 85, pp. 129-135, Oct 23 2005.
[9] K. Haupt, "Moleculy imprinted polymers: The next generation," Analytical Chemistry, vol. 75, pp. 376a-383a, Sep 1 2003.
[10] M. E. Diaz-Garcia and R. B. Laino, "Molecular imprinting in sol-gel materials: Recent developments and applications," Microchimica Acta, vol. 149, pp. 19-36, Feb 2005.
[11] M. V. Polyakov, "Adsorption properties and structure of silica gel," Zhurnal Fizicheskoi Khimii, vol. 2, pp. 799-905, 1931.
[12] M. J. Whitcombe and E. N. Vulfson, "Imprinted polymers," Advanced Materials, vol. 13, pp. 467-478, Apr 4 2001.
[13] J. Haginaka, "Monodispersed, molecularly imprinted polymers as affinity-based chromatography media," Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol. 866, pp. 3-13, Apr 15 2008.
[14] T. B. Liao, X. Tu, and S. J. Li, "Selective adsorption and recognition by molecularly imprinted polymer: A study on molecular self-assembly and its effect on selectivity," Polymer-Plastics Technology and Engineering, vol. 46, pp. 613-619, 2007.
[15] K. S. Lee, D. S. Kim, and B. S. Kim, "Biodegradable molecularly imprinted polymers based on poly (epsilon-caprolactone)," Biotechnology and Bioprocess Engineering, vol. 12, pp. 152-156, Mar-Apr 2007.
[16] K. Farrington, E. Magner, and F. Regan, "Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction," Analytica Chimica Acta, vol. 566, pp. 60-68, Apr 27 2006.
[17] H. Yan, L. Jin, and K. H. Row, "Special selectivity of molecularly imprinted monolithic stationary phase," Journal of Liquid Chromatography & Related Technologies, vol. 28, pp. 3147-3155, 2005.
[18] Z. Y. Chen, R. Zhao, D. Shangguan, and G. Q. Liu, "Preparation and evaluation of uniform-sized molecularly imprinted polymer beads used for the separation of sulfamethazine," Biomedical Chromatography, vol. 19, pp. 533-538, Sep 2005.
[19] X. J. Liu, C. B. Ouyan, R. Zhao, D. H. Shangouan, Y. Chen, and G. Q. Liu, "Monolithic molecularly imprinted polymer for sulfamethoxazole and molecular recognition properties in aqueous mobile phase," Analytica Chimica Acta, vol. 571, pp. 235-241, Jul 7 2006.
[20] J. X. He, S. Wang, G. Z. Fang, H. P. Zhu, and Y. Zhang, "Molecularly imprinted polymer online solid-phase extraction coupled with high-performance liquid chromatography-UV for the determination of three Sulfonamides in pork and chicken," Journal of Agricultural and Food Chemistry, vol. 56, pp. 2919-2925, May 14 2008.
[21] S. F. Su, M. Zhang, B. L. Li, H. Y. Zhang, and X. C. Dong, "HPLC determination of sulfamethazine in milk using surface-imprinted silica synthesized with iniferter technique," Talanta, vol. 76, pp. 1141-1146, Sep 15 2008.
[22] K. Haupt and K. Mosbach, "Molecularly imprinted polymers and their use in biomimetic sensors," Chemical Reviews, vol. 100, pp. 2495-2504, Jul 2000.
[23] L. I. Andersson, "Molecular imprinting: developments and applications in the analytical chemistry field," Journal of Chromatography B, vol. 745, pp. 3-13, Aug 4 2000.
[24] P. D. Martin, G. R. Jones, F. Stringer, and I. D. Wilson, "Comparison of normal and reversed-phase solid phase extraction methods for extraction of beta-blockers from plasma using molecularly imprinted polymers," Analyst, vol. 128, pp. 345-350, 2003.
[25] J. F. Yin, G. L. Yang, and Y. Chen, "Rapid and efficient chiral separation of nateglinide and its L-enantiomer on monolithic molecularly imprinted polymers," Journal of Chromatography A, vol. 1090, pp. 68-75, Oct 7 2005.
[26] H. W. Sun, F. X. Qiao, and G. Y. Liu, "Characteristic of theophylline imprinted monolithic column and its application for determination of xanthine derivatives caffeine and theophylline in green tea," Journal of Chromatography A, vol. 1134, pp. 194-200, Nov 17 2006.
[27] O. Bruggemann, A. Visnjevski, R. Burch, and P. Patel, "Selective extraction of antioxidants with molecularly imprinted polymers," Analytica Chimica Acta, vol. 504, pp. 81-88, Feb 16 2004.
[28] H. Yan and K. H. Row, "Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of tryptophan and N-CBZ-phenylaianine enantiomers," Biotechnology and Bioprocess Engineering, vol. 11, pp. 357-363, Jul-Aug 2006.
[29] D. Cunliffe, A. Kirby, and C. Alexander, "Molecularly imprinted drug delivery systems," Advanced Drug Delivery Reviews, vol. 57, pp. 1836-1853, Dec 6 2005.
[30] W. Cummins, P. Duggan, and P. McLoughlin, "A comparative study of the potential of acrylic and sol-gel polymers for molecular imprinting," Analytica Chimica Acta, vol. 542, pp. 52-60, Jun 22 2005.
[31] M. M. Collinson, "Sol-gel strategies for the preparation of selective materials for chemical analysis," Critical Reviews in Analytical Chemistry, vol. 29, pp. 289-311, 1999.
[32] O. Cauli and M. Morelli, "Caffeine and the dopaminergic system," Behavioural Pharmacology, vol. 16, pp. 63-77, Mar 2005.
[33] L. L. Hench and J. K. West, "The Sol-Gel Process," Chemical Reviews, vol. 90, pp. 33-72, Jan-Feb 1990.
[34] M. Jokinen, E. Gyorvary, and J. B. Rosenholm, "Viscoelastic characterization of three different sol-gel derived silica gels," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 141, pp. 205-216, Nov 1 1998.
[35] A. M. Siouffi, "Silica gel-based monoliths prepared by the sol-gel method: facts and figures," Journal of Chromatography A, vol. 1000, pp. 801-818, Jun 6 2003.
[36] B. Brunetti, E. Desimoni, and P. Casati, "Determination of caffeine at a Nafion-covered glassy carbon electrode," Electroanalysis, vol. 19, pp. 385-388, Jan 2007.
[37] E. C. European, "Establishment of Maximum Residue Levels of Veterinary Medical Products in foodstuffs of animal origin," European Community Council Regulation, vol. No 2377/90, pp. 224/1-8, 1990.
[38] N. A. Littlefield, W. G. Sheldon, R. Allen, and D. W. Gaylor, "Chronic Toxicity Carcinogenicity Studies of Sulfamethazine in Fischer 344/N Rats - 2-Generation Exposure," Food and Chemical Toxicology, vol. 28, pp. 157-167, Mar 1990.
[39] A. E. Cribb, M. Miller, A. Tesoro, and S. P. Spielberg, "Peroxidase-Dependent Oxidation of Sulfonamides by Monocytes and Neutrophils from Humans and Dogs," Molecular Pharmacology, vol. 38, pp. 744-751, Nov 1990.
[40] H. S. Wei, Y. L. Tsai, J. Y. Wu, and H. Chen, "Preparation of inorganic molecularly imprinted polymers with higher adsorption and selectivity by sol-gel method," Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol. 836, pp. 57-62, May 19 2006.
[41] H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, and N. Tanaka, "Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography," Analytical Chemistry, vol. 68, pp. 3498-3501, Oct 1 1996.
[42] H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, and N. Tanaka, "Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography," Journal of Chromatography A, vol. 762, pp. 135-146, Feb 21 1997.
[43] K. Nakanishi, H. Minakuchi, N. Soga, and N. Tanaka, "Double pore silica gel monolith applied to liquid chromatography," Journal of Sol-Gel Science and Technology, vol. 8, pp. 547-552, 1997.
[44] N. Ishizuka, H. Minakuchi, K. Nakanishi, N. Soga, and N. Tanaka, "Designing monolithic double-pore silica for high-speed liquid chromatography," Journal of Chromatography A, vol. 797, pp. 133-137, Feb 27 1998.
[45] K. Nakanishi, H. Minakuchi, N. Soga, and N. Tanaka, "Structure design of double-pore silica and its application to HPLC," Journal of Sol-Gel Science and Technology, vol. 13, pp. 163-169, 1998.
[46] Z. Zhang, Y. Tanigami, R. Terai, and H. Wakabayashi, "Preparation of Transparent Methyl-Modified Silica-Gel," Journal of Non-Crystalline Solids, vol. 189, pp. 212-217, Sep 1995.
[47] S. Arrhenius, "The Viscosity of Aqueous Mixture," Physical and Chemistry, vol. 1, pp. 285-298, 1887.
[48] K. K. Unger, D. Kumar, M. Grun, G. Buchel, S. Ludtke, T. Adam, K. Schumacher, and S. Renker, "Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations," Journal of Chromatography A, vol. 892, pp. 47-55, Sep 15 2000.
[49] L. Holysz, "The effect of thermal treatment of silica gel on its surface free energy components," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 134, pp. 321-329, Mar 31 1998.
[50] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity " Pure and Applied Chemistry, vol. 57, pp. 603-619, 1985.
指導教授 陳暉(Hui Chen) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明