博碩士論文 943404008 詳細資訊


姓名 何宗仁(Tsung-Jen Ho)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 內部熱整合蒸餾塔之設計與模式化研究
(Design and Modeling Studies of Internally Heat-Integrated Distillation Columns)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 內部熱整合蒸餾塔以壓縮機提高精餾段壓力,使精餾段溫度高於汽提段後,藉由適當的硬體設計使精餾段與汽提段進行熱交換,可以大幅降低蒸餾塔的熱能耗用。本研究基於國內外對於內部熱整合蒸餾塔的基礎設計相關研究完全欠缺,因此利用傳統的彭川(Ponchon–Savarit)熱焓圖解法,擴展應用在內部熱整合蒸餾塔的基本設計。此獨創的圖解法可以清楚地描述系統的質能平衡狀態,且明確地計算出地蒸餾塔所需之理論板數、再沸器或進料預熱器熱負荷、最小內部總熱傳面積等關鍵參數。此方法最大的優點在於節省一般蒸餾商業設計軟體的反覆試誤模擬時間,亦可避免獲得商業軟體可能出現的錯誤結果。研究中以甲醇與水的分離系統進行內部熱整合蒸餾塔的圖解法測試,並將該設計結果輸入至商業軟體Aspen Plus中驗證,證實此改良的Ponchon-Savarit圖解法,可以正確地設計出內部熱整合蒸餾塔。
本研究的另一部份則是建立實際且可靠的內部熱整合蒸餾塔流程與控制策略。研究中分別從熱力學觀點、工程實用性及蒸餾控制自由度的角度,分析證實再沸器或是進料預熱器必須是內部熱整合蒸餾塔的必備裝置;同時也採用程式語言建立嚴謹模式的內部熱整合蒸餾塔動態模擬模組,將蒸餾操作過程中的塔壓變化與汽相滯留量納入計算。該動態模擬以丙烯丙烷分離為測試載體,結果均顯示出本研究所提出的流程與控制策略具備穩定與實用之價值。
摘要(英) The heat-integrated distillation column, generally called HIDiC, applies the principle of internal heat integration between the rectifying section and the stripping section of a distillation column by increasing the temperature of the rectifying section with a compressor. First part in this work, theoretical stage-to-stage study of a HIDiC based on the Ponchon–Savarit method is performed. Several HIDiC design variables, such as the number of theoretical stages, reboiler (or preheater) duty, minimum overall internal heat-transfer rate, and configuration, can easily be interpreted in the Ponchon–Savarit (Hxy) diagram. Such an approach brings new insights into and better understanding of the features of HIDiC. A preliminary (or shortcut) HIDiC design procedure using Hxy diagrams is also proposed. The obvious advantages are that the proposed method allows the direct design of a HIDiC, and avoids trial-and-error design in using a commercial simulator. In addition, the proposed graphical method can foresee possible pinch points before requiring use of a rigorous simulator. Furthermore, the proposed graphical estimation of internal stages of a HIDiC is applied to a binary, methanol–water system, and compared to the rigorous simulation obtained using Aspen Plus.
Second part of this thesis reports a dynamic simulation study of the internally heat-integrated distillation column (HIDiC) using equilibrium-based models. First, three different HIDiC structures, i.e. an ideal HIDiC, a HIDiC with a preheater, and a HIDiC with a reboiler, are analyzed by control degrees of freedom (DOF). The reboiler is considered to be a necessary part of the HIDiC from DOF analysis, thermodynamic analysis, and engineering judgment. Then, a heuristic HIDiC control configuration including a bottoms reboiler control is proposed. A modular structured simulator for dynamic distillation columns using MESH equations is developed. A typical medium-pressure HIDiC for separation of propylene and propane explored by Olujic et al. [ ] is adopted as numerical examples for dynamic simulation studies.
Keywords: Heat-integration distillation column, Ponchon–Savarit method, Dynamic simulation, Distillation design, Distillation control.
關鍵字(中) ★ 蒸餾設計
★ 蒸餾控制
★ 動態模擬
★ 彭川圖解法
★ 熱整合蒸餾塔
關鍵字(英) ★ Distillation design
★ Distillation control.
★ Dynamic simulation
★ Ponchon–Savarit method
★ Heat-integration distillation column
論文目次 Acknowledgements I
Chinese Abstract II
Abstract III
Table of Contents IV
List of Figures VI
List of Tables VIII
Nomenclature IV
1. Introduction 1
1.1. Methods for Reducing the Energy Consumption of Distillation 1
1.2. Design and Modeling of HIDiC 4
2. Literature Review 7
3. Extension of Ponchon–Savarit Method 11
3.1. Rectifying Section of HIDiC 11
3.2. Stripping Section of HIDiC 15
3.3. Overall Consideration of a HIDiC 16
3.4. Minimum Overall Internal Heat-Transfer Rate 20
3.5. Drawing the McCabe–Thiele Diagram 21
4. Preliminary Design Procedures and Case Studies 25
4.1. Design Procedures 25
4.2. Illustrative Examples 26
5. Analysis of HIDiC Configurations with Control 34
6. Modeling of the HIDiC with Variable Column Pressure 40
7. Dynamic Simulation for a Propylene-Propane HIDiC System 47
7.1. CS1 Simulation 49
7.2. CS2 Simulation 51
8. Conclusions and Future Studies 64
8.1. Conclusions 64
8.2. Future Work and Expectation 65
Bibliographies 69
Appendix 75
About the Author 79
參考文獻 Olujic, Z.; Sun, L.; de Rijke, A. & Jansens, P. J. Conceptual Design of an Internally Heat-Integrated Propylene-Propane Splitter. Energy 2006, 31, 3083.
Humphrey, J. L.; Seibert, A. F. & Koort, R. A. Separation Technologies Advances and Priorities. Final Report for US Department of Energy, Office of Industrial Technologiest, Washington DC, 1991.
Brugma, A. J. Fractional Distillation of Liquid Mixtures. Especially Petroleum, Dutch Patent No. 41.850 1937.
Brugma, A. J. Process and Device for Fractional Distillation of Liquid Mixtures, More Particularly Petroleum. US Patent 2,295,256 1942.
Petlyuk, F. B.; Platanov, V. M. & Slavinskii, D. M. Thermodynamically Optimal Method for Separating Multicomponent Mixtures. Intl. Chem. Eng. 1965, 5, 555.
Wolff, E. A. & Skogestad, S. Operation of Integrated Three Product (Petlyuk) Columns. Ind. Eng. Chem. Res. 1995, 34, 2094.
Halvorsen, I. J. & Skogestad, S. Optimal Operation of Peltyuk Distillation: Steady State Behaviour. J. Process Control 1999, 9, 407.
Shah, P. B. Squeeze more out of Complex Columns. Chem. Eng. Progress 2002, 98, 46.
Wright, R.O. U.S. Patent 2,471,134, 1949.
Kaibel, G. Distillation Columns with Vertical Partition. Chem. Eng. Tech. 1987, 10, 92–98.
Schultz, M. A.; Stewart, D. G.; Harris, J. M.; Rosenblum, S. P.; Shakur, M. S. & O’Brien, D. E. Reduce Costs with Dividing Wall Columns. Chem. Eng. Progress 2002, 98, 64.
Freshwater, D. C. The Heat Pump in Multicomponent Distillation Brit. Chem. Eng. 1961, 6, 388.
Freshwater, D. C. Thermal Economy in Distillation. Trans. Inst. Chem. Eng. 1951, 29, 149.
Null, H. R. Heat Pump in Distillation. Chem. Eng. Progress 1976, 78, 58.
Smith, R., Chemical Process Design and Integration, 2nd ed.; John Wiley & Sons Ltd: England, 2005, 341.
Sulzer Chemtech, Distillation and Heat Pump Technology. Brochure 1991, 22.47.06.40- V.91-100.
Smith, B. D. Design of Equilibrium Stage Processes; McGraw-Hill Book Co. 1963.
Huang, K.; Matsuda, K.; Iwakabe, K.; Takamatsu, T. & Nakaiwa, M. Graphical Synthesis of an Internally Heat-Integrated Distillation Column J. Chem. Eng. Japan 2006, 39, 703.
Aspen Plus V7.0, Aspen Technology Inc., Cambridge, MA. 1981-2008.
Huang, K.; Nakaiwa, M.; Akiya, T.; Aso, K. & Takamasu, T. A Numerical Consideration on Dynamic Modeling and Control of Ideal Heat-Integrated Distillation Columns. J. Chem. Eng. Japan 1996, 29, 344.
Huang, K.; Matsuda, K.; Takamatsu, T. & Nakaiwa, M. The Influences of Pressure Distribution on an Ideal Heat-Integrated Distillation Column (HIDiC). J. Chem. Eng. Japan 2006, 39, 652.
Franks, R. G. E. Modeling and Simulation in Chemical Engineering; John Wiley & Sons, Inc. 1972.
Choe, Y. S. & Luyben, W. L. Rigorous Dynamic Models of Distillation Columns. Ind. Eng. Chem. Res. 1987, 26, 2158.
Soave, G. Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci. 1972, 27, 1197.
Mah, R. S.; Nicholas, J. J. & Wodnik, R. B. Distillation with Secondary Reflux and Vaporization, a Comparative Evaluation, AIChE J. 1977, 23 651.
Fitzmorris, R. E. & Mah, R. S. H. Improving Distilation Column Design using Thermodynamic Availability Analysis. AIChE J. 1980, 26, 265.
Haselden, G. G. Distillation Processes and Apparatus. U.S. Patent 4,025,398 1977.
Seader, J. D. Continuous Distillation Apparatus and Method. U.S. Patent 4,234,391 1980.
Govind, R. Distillation Column and Process. U.S. Patent 4,615,770 1986.
Govind, R. Dual Distillation Columns U.S. Patent 4,681,661 1987.
Shimizu1, K. & Mah, R. S. H. Dynamic Characteristic of Binary SRV Distillation Systems. Comp. & Chem. Eng. 1983, 7, 105.
Nakaiwa, M.; Huang, K.; Naito, K.; Endo, A.; Owe, M.; Akiya, T.; Nakane, T. & Takamatsu, T., A New Configuration of Ideal Heat-Integrated Distillation Columns (HIDiC). Comp. & Chem. Eng. 2000, 24, 239.
Iwakabe, K.; Nakaiwa, M.; Huang, K.; Nakanishi, T.; Ohmori, T.; Endo, A. & Yamamoto, T. Performances of an Internally Heat-Integrated Distillation Column (HIDiC) in Separation of Ternary Mixtures. J. Chem. Eng. Japan 2006, 39, 417.
Aso, K.; Takamatsu, T. & Nakaiwa, M. Heat-Integrated Distillation Column. U.S. Patent 5,873,047 1998.
Nakaiwa, M.; Huang, K.; Endo, A.; Ohmori, T.; Akiya, T. & Takamatsu, T. Internally Heat-Integrated Distillation Columns: A Review. Chem. Eng. Res. Des. 2003, 81, 162.
Marcilla, A.; Gomez, A.; Reyes, J. A. & Olaya, M. M. New Methods for Quaternary Systems Liquid–Liquid Extraction Tray to Tray Design. Ind. Eng. Chem. Res. 1999, 38, 3083.
Reyes, J. A.; Gomez, A. & Marcilla, A. Graphical Concepts to Orient the Minimum Reflux Ratio Calculation on Ternary Mixtures Distillation. Ind. Eng. Chem. Res. 2000, 39, 3912.
Lee, J. W.; Hauan, S. & Westerberg, A. W. Graphical Methods for Reaction Distribution in Reactive Distillation Column. AIChE J. 2000, 46, 1218.
Daza, O. S.; Perez-Cisneros, E. S.; Bek-Pedersen, E. & Gani, R. Graphical and Stage-to-Stage Methods for Reactive Distillation Column Design. AIChE J. 2003, 49, 2822.
Luyben, W. L. & Wenzel, L. A. Chemical Process Analysis: Mass and Energy Balances; Prentice-Hall, Inc., 1988.
Farag, I. H. & Karri, S. B. R. Computer-Aided Graphics in Distillation Columns Design. Computers Educ. 1989, 13, 305.
Ledanols, J. M. & Ollvera-Fuentes, C. Modified Ponchon–Savarit and McCabe– Thiele Methods for Distillation of Two-Phase Feeds. Ind. Eng. Chem. Process Des. Dev. 1984, 23, 1.
Salem, A. B. S. H. & Fekri, M. Rigorous Computation of Binary Distillation Systems. Sep. Sci. Technol. 1994, 29, 1789.
Campagne, W. v. L. Use Ponchon–Savarit in Your Process Simulation, Part 1. Hydrocarb. Process. 1993, 72, 41.
Campagne, W. v. L. Use Ponchon–Savarit in Your Process Simulation, Part 2. Hydrocarb. Process. 1993, 72, 63.
Govind, R. Analytical Form of the Ponchon–Savarit Method for Systems with Straight Enthalpy-Composition Phase Lines. Ind. Eng. Chem. Process Des. 1982, 21, 532.
Bitter, R. Comments on “Analytical form of the Ponchon–Savarit Method for Systems with Straight Enthalpy-Composition Phase Lines”. Ind. Eng. Chem. Process Des. 1983, 22, 684.
Naito, K.; Nakaiwa, M.; Huang, K.; Endo, A.; Aso, K.; Nakanishi, T.; Nakamura, T.; Noda, H.; & Takamatsu, T. Operation of a Bench-Scale Ideal Heat-Integrated Distillation Column (HIDiC): An Experimental Study, Comp. & Chem. Eng. 2000, 24, 495.
Huang, K.; Matsuda, K.; Iwakabe, K.; Takamatsu, T. & Nakaiwa, M., Choosing More Controllable Configuration for an Internally Heat-Integrated Distillation Column, J. Chem. Eng. Japan 2006, 39, 818.
Huang, K.; Wang, S.-J.; Iwakabe, K.; Shan, L.; & Zhu, Q. Temperature Control of an ideal Heat-Integrated Distillation Column (HIDiC). Chem. Eng. Sci. 2007, 62, 6486.
Grassi, V. G. Rigorous Modeling and Conventional Simulation, in: Luyben, W. L. (Ed.), Practical Distillation Control 1992, 29-47. Van Nostrand Reinhold.
Kyle, B. G., Chemical and Process Thermodynamics, 3rd ed.; Prentice Hall PTR: New York, 1999.
de Rijke, A.; Sun, L.; Gadalla, M. A.; Jansens, P. J. & Olujic, Z. Finding an Optimal HIDiC Configuration for Various Industrial Distillation Applications. The 7th World Congress of Chemical Engineering, 2005, Scotland, PI-006.
Nakaiwa, M.; Huang, K.; Owa, M.; Akiya, T.; Nakane, T.; Sato, M.; Takamatsu, T. & Yoshitome, H. Potential Energy Savings in Ideal Heat-Integrated Distillation Column. Appl. Therm. Eng. 1998, 18, 1077.
Luyben, W. L., Design and control degrees of freedom. Ind. Eng. Chem. Res. 1996, 35, 2204.
Luyben, W. L.; Tyreus, B. D. & Luyben, M. L. Plantwide Process Control, McGraw-Hill Book Company, 1999.
Shinskey, F. G. Energy Conservation through Control, Academic Press, 1978.
Shinskey, F. G. Process Control System, 4th ed., McGraw-Hill Book Company, 1996.
Muhrer, C. A.; Collura, M. A. & Luyben, W. L. Control of Vapor Recompression Distillation Columns. Ind. Eng. Chem. Res. 1990, 29, 59.
Liptak, B. G., Instrument Engineers’ Handbook: Process Control, 3rd ed., Chilton Book Co. 1995.
Smith, R. Chemical Process Design and Integration, John Wiley & Sons, Ltd., 2005.
Fukushima, T.; Kano, M.; & Hasebe, S. Dynamics and Control of Heat-Integrated Distillation Column (HIDiC). J. Chem. Eng. Japan 2006, 39,1096.
Kyle, B. G. Chemical and Process Thermodynamics, 3rd ed., Prentice-Hall, Inc., 1999.
Luyben, W. L. & Luyben, M. L. Essentials of Process Control, McGraw-Hill Book Company, 1997.
King, C. J. Separation Processes. 2nd ed., McGraw-Hill Book Co., 1980.
Huang, K.; Nakaiwa, M.; Akiya, T.; Aso, K. & Takamasu, T. A Numerical Consideration on Dynamic Modeling and Control of Ideal Heat-Integrated Distillation Columns, J. Chem. Eng. Japan 1996, 29, 344.
Shinskey, F. G. Process Control System, 4th ed., McGraw-Hill Book Company, 1996.
McCabe, W. L.; Smith, J. C. & Harriott, P. Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill Book Company, 2005.
Astrom, K. J. & Hagglund, T. PID Controllers: Theory, Deign and Tuning, 2nd ed., Instrument Society of America, 1995.
Smith, C. A. & Corripio, A. B. Principles and Practice of Automatic Process Control, 3rd ed., John Willey & Sons, Inc. 2006.
Marlin T. E. Process Control: Designing Processes and Control Systems for Dynamic Performance, 2nd ed., McGraw-Hill Book Company, 2000.
Mejdell, J. & Skogestad, S. Estimation of Distillation Compositions from Multiple Temperature Measurements Using Partial-Least-Squares Regression. Ind. Eng. Chem. Res. 1991, 30, 2543.
Baratti, R.; Bertucco, A.; Da Rold, A. & Morbidelli, M. Development of a Composition Estimator for Binary Distillation Columns. Application to a Pilot Plant. Chem. Eng. Sci. 1995, 50, 1541.
Yeh, T.-M.; Huang, M.-C. & Huang, C.-T. Estimate of Process Compositions and Plantwide Control from Multiple Secondary Measurements Using Artificial Neural Networks. Comp. & Chem. Eng. 2003, 27, 55.
Hernandez, S. Analysis of Energy-Efficient Complex Distillation Options to Purify Bioethanol. Chem. Eng. Technol. 2008, 31, 597.
Shizuo Midori; Shuang Ning Zheng & Ikuho Yamada. Azeotropic Distillation Process with Vertical Dividing-Wall Column. Kagaku Kogaku Ronbunshu 2001, 27, 756.
Luyben, W. L. Process Modeling, Simulation, and Control for Chemical Engineers, 2nd ed., McGraw-Hill Book Company, 1990.
指導教授 李亮三(Liang-Sun Lee) 審核日期 2010-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡