博碩士論文 943404009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.142.171.180
姓名 楊士賢(Shih-Hsien Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 應用電漿技術製備超疏水膜材之研究
(Preparation of Superhydrophobic Films by Plasma Technology)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文採用具疏水官能基之單體配合不同電漿沉積方式調變操作參數,於單一步驟下快速製備具低表面能的粗糙結構,使膜材具有優異的超疏水特性。並對其物理、化學、機械強度及光學等特性進行有系統的分析及探討,並由結果對電漿沉膜機制進行討論。其重要研究結果如下:
首先使用低壓沉積系統及C6F6單體配合脈衝式電漿在單一製程下沉積超疏水薄膜,探討脈衝電漿的能率循環(Duty Cycle, DC)對沉積膜材表面結構及化學特性的影響。結果發現,當電漿能率循環由1逐漸減少到0.1時,膜材結構會由薄膜逐漸的轉變為顆粒狀,大幅的增加了薄膜表面的粗糙度,因此造就了超疏水薄膜。此外,將易剝落的膜材沉積在低極性基材上,可大幅增加與薄膜之黏著性,以增加薄膜的應用性。
於低壓下使用三種有機矽氧烷Ethoxytrimethylsilane (EOTMS)、Diethoxydimethylsilane (DEODMS)以及Methyltriethoxysilane (MTEOS)等單體,混入不同流率之氧氣進行沉積反應。實驗結果可得知,當導入氧氣於反應中可在矽晶片上沉積出硬度8H等級的硬質矽膜。另外使用PMMA做為基板時,沉積一層緩衝層(Buffer Layer)並將硬膜厚度增加到1500 nm,硬質膜則具有5B等級黏著度、7H等級硬度以及良好的疏水特性。
另外發展自組式大氣電漿(Atmospheric Pressure Plasma, APP)沉積系統進行沉積超疏水薄膜。結果可得知,在HMDSN大氣電漿中混入較高的氧氣比例可得較快的沉積速率,當電漿噴嘴(Nozzle)間距由20 mm逐漸減少至10 mm,膜材結構會由平坦轉變成較為粗糙的表面,因此,可在10 mm的噴嘴間距條件下,製備具水滴接觸角(Contact Angle)超過150°以及傾斜角(Sliding Angle)小於5°的超疏水薄膜。最後由電腦模擬及量測數據的討論,可提出一簡單的成膜機制說明電漿參數對鍍膜成果的影響。
利用大氣電漿於導電玻璃及不導電的光學玻璃上進行沉積,實驗結果發現,當以導電玻璃做為基板所引發的電弧(Arc)現象進行鍍膜,可製備具170°的水滴接觸角以及2.2°的傾斜角的薄膜。另外使用導電基板並改變不同載台移動速度進行沉積,可於載台移動速度150 mm/s的條件下,沉積出薄膜具水滴接觸角169.0°、二碘甲烷油滴接觸角146.9°以及高達97.1%之平均可見光絕對穿透率,成功的以極快速的方式製備透明超雙疏薄膜。
摘要(英) In this paper, the superhydrophobic films were prepared rapidly in one step by adjusting various parameters. Besides, the physical, chemical, mechanical strength, and optical properties were analyzed and discussed. The plasma deposition mechanisms were also discussed through above results as following:
First, super-hydrophobic films were deposited in one-step simple process by pulsed RF C6F6 plasma, and the influence of duty-cycle (DC) on the surface structure and chemical characteristics of depositing fluorocarbon films were investigated. It was found that with decreasing the DC from 1 to 0.1, the rough structure of the film which had a lot of particles was obtained. Besides, this composite structure with low surface energy resulted in exhibiting the desirable super-hydrophobic surface property. Finally, the fluorocarbon films were prepared on cotton substrate and the adhesion on the substrate was strong.
Second, the silicon wafer and plastic substrate have been coated silica films by Plasma enhanced chemical vapor deposition (PECVD). The films were deposited by introducing Ethoxytrimethylsilane (EOTMS), Diethoxydimethylsilane (DEODMS) and Methyltriethoxysilane (MTEOS) into the RF bell jar reactor fed with different oxygen flow rate. When adding oxygen into PECVD reactor, SiOx films with hardness 8H were deposited on hard silicon wafer. On the other hand, the SiOx film with 5B degree adhesion, 7H degree hardness, and hydrophobic characteristic could be obtained when a buffer layer was coated between the 1500nm-thick of SiOx film and the PMMA substrate.
Third, the chemical properties and surface morphology of superhydrophobic (SH) films deposited by self-assembled RF atmospheric-pressure plasma jet (APPJ) deposition system was investigated. The O2/HMDSN (hexamethyldisilazane) and Ar serve as the deposition precursor and ionization gas, respectively. Consequently, the smooth surface was transformed into a rough surface with many particles when the nozzle-to-sample distance was decreased from 20 mm to 10 mm. The SH films (contact angle over 150° and sliding angle below 5°) were obtained when the nozzle-to-sample distance was 10 mm. A simplified deposition mechanism is proposed to explain the effect of process parameters on the films that are formed.
Finally, the film was coated on the conductive and the non-conducting glass by APPJ system. It was found that the Arc condition would be produced on the conductive glass, and the superhydrophobic films ( contact angle: 170o, sliding angle: 2.2o ) could be prepared using the HMDSN monomer by Arc-APPJ. Besides, the absolute optical transmittance of the film increased with increasing the speed of stage. Finally, the transparent superamphiphobic film (WCA: 169o, OWA: 146.9o and Tavg: 97.1%) could be prepared rapidly in optimum condition (150 mm/s) by Arc-APPJ.
關鍵字(中) ★ 超疏水
★ 能率循環
★ 脈衝電漿
★ 粗糙度
★ 黏著性
★ 有機矽氧烷
★ 大氣電漿
★ 接觸角
★ 傾斜角
★ 超雙疏
關鍵字(英) ★ duty cycle
★ adhesion
★ roughness
★ pulsed plasma
★ superhydrophobic
★ contact angle
★ superamphiphobic
★ atmospheric pressure plasma
論文目次 中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標與論文架構 3
參考文獻 6
第二章 原理與文獻回顧 9
2-1 電漿簡介 9
2-1.1 電漿緣起 9
2-1.2 電漿基本原理 10
2-1.3 遙距式與脈衝式電漿 12
2-1.4 電漿鍍膜 15
2-2 大氣電漿簡介 18
2-2.1 大氣電漿基本原理 18
2-2.2 大氣電漿種類 22
2-2.3 大氣電漿鍍膜回顧 25
2-3 超疏水簡介 29
2-3.1 蓮花效應 29
2-3.2 超疏水原理 30
2-3.3 表面粗糙度之理論數學模式 32
2-3.4 粗糙表面之製備方式 36
2-3.5 電漿技術製備超疏水薄膜回顧 38
文獻回顧 45
第三章 實驗方法與儀器原理 54
3-1 論文流程、實驗方法與儀器原理 54
3-1.1 論文主體與各章節之實驗架構 54
3-1.2 實驗藥品與材料 60
3-1.3 電漿沉積設備 63
3-2 分析儀器及原理 70
3-2.1 化學性質量測 70
3-2.2 物理性質量測 73
3-2.3 薄膜表面特性量測 77
3-2.4 電漿特性模擬分析 82
參考文獻 83
第四章 以脈衝式電漿製備奈米微結構超疏水薄膜 85
4-1 前言 85
4-2 實驗步驟 86
4-3 結果與討論 88
4-3.1 化學結構分析 88
4-3.2 表面型態分析 94
4-3.4 成膜反應機制 100
4-4 結論 100
參考文獻 102
第五章 以PECVD製備硬質疏水膜於PMMA之研究 105
5-1 前言 105
5-2 實驗 106
5-2.1 沉積系統 106
5-2.2 沉積薄膜特性 107
5-2.3 鉛筆硬度測試 107
5-2.4 方格測試 108
5-3 結果與討論 109
5-3.1 矽晶片上硬質SiOx薄膜之特性 109
5-3.1.1 不同氧含量單體 109
5-3.1.2 添加不同氧氣流率 113
5-3.2 硬質SiOx膜沉積於PMMA之機械性質 117
5-3.2.1 硬質SiOx薄膜於PMMA的黏著強度 117
5-3.2.2 不同厚度之硬質SiOx薄膜於PMMA的硬度 118
5-3.2.3 不同厚度之硬質SiOx薄膜於PMMA的穿透率 120
5-4 結論 121
參考文獻 122
第六章 以大氣電漿製備SiOx薄膜於超疏水之應用 125
6-1 前言 125
6-2 實驗 126
6-3 結果與討論 129
6-3.1 單體結構探討 129
6-3.2 不同氧氣流量 130
6-3.3 不同噴嘴間距 131
6-3.3.1 噴嘴間距對接觸角之影響 132
6-3.3.2 噴嘴間距對表面起伏之影響 134
6-3.3.3 噴嘴間距對薄膜化學組成之影響 136
6-3.4 薄膜沉積機制 138
6-4 結論 140
6-5 後記:電弧現象的產生 141
參考文獻 142
第七章 以大氣電漿製備透明超雙疏膜材 144
7-1 前言 144
7-2 實驗 145
7-3 結果與討論 148
7-3.1 不同電漿狀態之影響 148
7-3.1.1 不同電漿狀態探討 148
7-3.1.2 不同電漿狀態所沉積薄膜之疏水特性 149
7-3.1.3 不同電漿狀態所沉積薄膜之透光性 150
7-3.1.4 不同電漿狀態所沉積薄膜之動態疏水特性 152
7-3.1.5 不同電漿所沉積膜材之化學特性 154
7-3.2 不同載台移動速度之影響 158
7-3.2.1 不同載台移動速度沉積薄膜之表面結構 158
7-3.2.2 不同載台移動速度沉積薄膜之雙疏特性 161
7-3.2.3 不同載台移動速度沉積薄膜之表面能分析 162
7-3.2.4 不同載台移動速度沉積薄膜之可見光穿透率 164
7-4 結論 165
7-5 後記:粗糙度對接觸角的影響 166
參考文獻 167
第八章 結論 170
附錄A:大氣電漿噴嘴 172
附錄B:大氣電漿電子溫度計算 173
已發表論文 174
參考文獻 第二章
[1] 洪昭南、郭有斌,『以化學氣相沉積法成長半導體薄膜』,化工技術,(2000)。
[2] Hynes, A. M., Shenton, M. J., Badyal, J. P. S., "Pulsed plasma polymerization of perfluorocyclohexane", Macromolecules, 29, 4220-4225 (1996).
[3] 楊士賢,『以脈衝式電漿輔助化學氣相沉積法製備氟化非晶薄膜之研究』,中原大學化學工程學系,碩士論文,民國94年。
[4] A. Grill. Cold Plasma in Materials Fabrication. 1993.
[5] Yasuda, H., Hirotsu, T., "Critical evaluation of condition of plasma polymerization", J. Polym. Sci. Pol. Chem., 16, 743 (1978).
[6] Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P., "Atmospheric pressure plasmas: A review", Spectrochimica Acta. Part B, 61, 2-30 (2006).
[7] Schutze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, G. S., Hicks, R. F., "The atmospheric-pressure plasma jet: A review and comparision to other plasma sources", IEEE Trans. Plasma Sci., 26, 1685-1694 (1998).
[8] 郭志成,『大氣電漿技術沉積二氧化矽薄膜之機械性質探討』,國立台灣大學工學院機械工程學研究所,碩士論文,民國96年。
[9] Babayan, S. E., Jeong, J. Y., Schütze, A., Tu, V. J., Moravej, M., Selwyn, G. S., Hicks, R. F., "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet", Plasma Sources Sci. Technol., 10, 573-578 (2001).
[10] Rymuza, Z., Misiak, M., Rzanek-Boroch, Z., Schmidt-Szalowski, K., Janowska, J., "The effects of deposition and test conditions on nanomechanical behaviour of ultrathin films produced by plasma-enhanced chemical vapour deposition process at atmospheric pressure", Thin Solid Films, 466, 158-166 (2004).
[11] Zhu, X., Arefi-Khonsari, F., Petit-Etienne, C., Tatoulian, M., "Open air deposition of SiO2 films by an atmospheric pressure line-shaped plasma", Plasma Process Polym., 2, 407-413 (2005).
[12] Hopfe, V., Spitzl, R., Dani, I., Maeder, G., Roch, L., Rogler, D., Leupolt, B., Schoeneich, B., "Remote microwave PECVD for continuous, wide-area coating under atmospheric pressure", Chem. Vapor Depos., 11, 497-509 (2005).
[13] Ladwig, A., Babayan, S., Smith, M., Hester, M., Highland, W., Koch, R., Hicks, R. F., "Atmospheric plasma deposition of glass coatings on aluminum", Surf. Coat. Technol., 201, 6460-6464 (2007).
[14] Raballand, V., Benedikt, J., Keudell, A. V., "Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet", Appl. Phys. Lett., 92, 091502/091501-091502/091503 (2008).
[15] Asmann, M., Kolman, D., Heberlein, J., Pfender, E., "Experimental confirmation of thermal plasma CVD of diamond with liquid feedstock injection model", Diamond Relat. Mater., 90, 13-21 (2000).
[16] Yokoyama, T., Kogoma, M., Kanazawa, S., Moriwaki, T., Okazaki, S., "The improvement of the atmospheric-pressure glow plasma method and the deposition of organic films", J. Phys. D: Appl. Phys., 23, 374- 377 (1990).
[17] Prat, R., Koh, Y. J., Babukutty, Y., Kogoma, M., Okazaki, S., Kodama, M., "Polymer deposition using atmospheric pressure plasma glow (APG) discharge", Polymer, 41, 7355-7360 (2000).
[18] Nozaki, T., Kimura, Y., Okazaki, K., "Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD", J. Phys. D: Appl. Phys., 35, 2779-2784 (2002).
[19] Kanazawa, S., Kogoma, M., Moriwaki, T., Okazaki, S., "Stable glow plasma at atmospheric pressure", J. Phys. D: Appl. Phys., 21, 838- 840 (1988).
[20] Janca, J., Klima, M., Slavicek, P., Zajickova, L., "HF plasma pencil - new source for plasma surface processing", Surf. Coat. Technol., 116- 119, 547- 551 (1999).
[21] Smiljanic, O., Stansfield, B. L., Dodelet, J. P., Serventi, A., Desilets, S., "Gas phase synthesis of SWNT by an atmospheric pressure plasma jet", Chem. Phys. Lett., 356, 189-193 (2002).
[22] Foest, R., Adler, F., Sigeneger, F., Schmidt, M., "Study of an atmospheric pressure glow discharge (APG) for thin film deposition", Surf. Coat. Technol., 163-164, 323-330 (2003).
[23] Cada, M., Churpita, O., Hubicka, Z., Sichova, H., Jastrabik, L., "Investigation of the low temperature atmospheric deposition of TCO thin films on polymer substrates", Surf. Coat. Technol., 177-178, 699-704 (2004).
[24] Inomata, K., Ha, H., Chaudhary, K. A., Koinuma, H., "Open air deposition of SiO2 film from a cold plasma torch of tetramethoxysilane-H2-Ar system", Appl. Phys. Lett., 64, 46-48 (1994).
[25] Brown, M., Hayes, P., Prangnell, P., "Charaterisation of thin silica films deposited on carbon fibre by an atmospheric pressure non-equilibrium plasma (APNEP)", Compos, Part A, 33, 1403-1408 (2002).
[26] Barthlott, W., Neinhuis, C., "Purity of the sacred lotus, or escape from contamination in biological surfaces", Planta, 202, 1-8 (1997).
[27] Yoshioka, S., Kinoshita, S., "Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly", Proc. R. Soc. Lond B, 271, 581-587 (2004).
[28] Woodward, I., Roucoules, W. C. E., Roucoules, V., Badyal, J. P. S., "Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films", Langmuir, 19, 3432-3438 (2003).
[29] Hare, E. F., Shafrin, E. G., Zisman, W. A. J., "Properties of films of adsorbed fluorinated acids", Phys. Chem., 58, 236-239 (1954).
[30] 張貴錢,『有機高分子與矽氧烷化合物製備超疏水及高透光性薄膜之研究』,國立中央大學化學工程與材料工程研究所,博士論文,民國96年。
[31] Young, T., "An Essay on the Cohesion of Fluids", Philos Trans. R. Soc. London, 95, 65-87 (1805).
[32] Wenzel, R. N., "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem., 28, 988-994 (1936).
[33] Cassie, A. B. D., Baxter, S., "Wettability of porous surfaces", Trans. Faraday. Soc., 40, 546-551 (1944).
[34] Patankar, N. A., "On the modeling of hydrophobic contact angles on rough surfaces", Langmuir, 19, 1249-1253 (2003).
[35] Patankar, N. A., "Transition between superhydrophobic states on rough surfaces", Langmuir, 20, 7097-7102 (2004).
[36] Shang, H. M., Wang, Y., Limmer, S. J., Chou, T. P., Takahashi, K., Cao, G. Z., "Optically transparent superhydrophobic silica-based films", Thin Solid Films, 472, 37-43 (2005).
[37] Nadargi, D. Y., Latthe, S. S., Hirashima, H., Rao, A. V., "Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels", Microporous and Mesoporous Materials, 117, (3)617-626 (2009).
[38] Venkateswara Rao, A., Latthe, S. S., Nadargi, D. Y., Hirashima, H., Ganesan, V., "Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method", Journal of Colloid and Interface Science, 332, (2)484-490 (2009).
[39] Nakajima, A., Abe, K., Hashimoto, K., Watanabe, T., "Preparation of hard super-hydrophobic films with visible light transmission", Thin Solid Films, 376, 140-143 (2000).
[40] Chang, K.-C., Chen, Y.-K., Chen, H., "Preparation and characterization of superhydrophobic silica-based surfaces by using polypropylene glycol and tetraethoxysilane precursors", Surf. Coat. Technol., 201, (24)9579-9586 (2007).
[41] Chang, K.-C., Chen, Y.-K., Chen, H., "Fabrication of highly transparent and superhydrophobic silica-based surface by TEOS/PPG hybrid with adjustment of the pH value", Surf. Coat. Technol., 202, (16)3822-3831 (2008).
[42] Tian, H., Yang, T., Chen, Y., "Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid", Appl. Surf. Sci., 255, (7)4289-4292 (2009).
[43] Li, M., Zhai, J., Liu, H., Song, Y., Jiang, L., Zhu, D., "Electrochemical deposition of conductive superhydrophobic zinc oxide thin films", J. Phys. Chem. B, 107, 9954-9957 (2003).
[44] Lee, W., Jin, M. K., Yoo, W. C., Lee, J. K., "Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability", Langmuir, 20, 7665-7669 (2004).
[45] Onda, T., Shibuichi, S., Satoh, N., Tsujii, K., "Super-water-repellent fractal surfaces", Langmuir, 12, 2125-2127 (1996).
[46] Jin, M., Feng, X., Feng, L., Sun, T., Zhai, J., Li, T., Jiang, L., "Superhydrophobic aligned polystyrene nanotube films with high adhesive force", Adv. Mater., 17, 1977-1981 (2005).
[47] Hozumi, A., Kondo, T., Kajita, I., Sekoguchi, H., Sugimoto, N., Takai, O., "Effects of methyl and perfluoro-alkyl groups on water repellency of silicon oxide films prepared by microwave plasma enhanced chemical vapor deposition", Jpn. J. Appl. Phys., 36, 4959-4963 (1997).
[48] Coulson, S. R., Woodward, I. S., Badyal, J. P. S., Brewer, S. A., Willis, C., "Plasmachemical functionalization of solid surfaces with low surface energy perfluorocarbon chains", Langmuir, 16, 6287-6293 (2000).
[49] Teare, D. O. H., Spanos, C. G., Ridley, P., Kinmond, E. J., Roucoules, V., Badyal, J. P. S., Brewer, S. A., Coulson, S., Willis, C., "Pulsed plasma deposition of super-hydrophobic nanospheres", Chem. Mat., 14, 4566-4571 (2002).
[50] Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A., "Ultra-water-repellent poly(ethylene terephthalate) substrates", Langmuir, 19, 10624-10627 (2003).
[51] Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H., Gleason, K. K., "Superhydrophobic Carbon Nanotube Forests", Nano. Lett., 3, 1701-1705 (2003).
[52] Fu, G. D., Kang, E. T., Neoh, K. G., "Deposition of Nanostructured Fluoropolymer Films on Silicon Substrates via Plasma Polymerization of Allylpentafluorobenzene", J. Phys. Chem. B, 107, 13902-13910 (2003).
[53] Cicala, G., Milellab, A., Palumboa, F., Faviab, P., d’Agostinob, R., "Morphological and structural study of plasma deposited fluorocarbon films at different thicknesses", Diam. Relat. Mat., 12, 2020-2025 (2003).
[54] Chase, J. E., Boerio, F. J., "Deposition of plasma polymerized perfluoromethylene-dominated films showing oil-repellency", J. Vac. Sci. Technol. A, 21, 607-615 (2003).
[55] Wu, Y., Sugimura, H., Inoue, Y., Takai, O., "Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma enhanced CVD at low substrate temperatures", Thin Solid Films, 435, 161-164 (2003).
[56] Kim, S. H., Kim, J. H., Kang, B. K., Uhm, H. S., "Superhydrophobic CFx coating via In-Line atmospheric RF plasma of He-CF4-H2", Langmuir, 21, 12213-12217 (2005).
[57] Kim, J. H., Liub, G., Kim, S. H., "Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma", J. Mater. Chem, 16, 977-981 (2006).
[58] Ohtsu, Y., Yamagami, N., Fujita, H., "Ultra-water repellency of films prepared by capacitively coupled C2H2F2/Ar discharge plasma", Jpn. J. Appl. Phys., 46, L679-L681 (2007).
[59] Satyaprasad, A., Jain, V., Nema, S. K., "Deposition of superhydrophobic nanostructured teflon-like coating using expanding plasma arc", Appl. Surf. Sci., 253, 5462-5466 (2007).
[60] Ji, Y. Y., Kim, S. S., Kwon, O. P., Lee, S. H., "Easy fabrication of large-size superhydrophobic surfaces by atmospheric pressure plasma polymerization with non-polar aromatic hydrocarbon in an in-line process", Appl. Surf. Sci., 255, 4575-4578 (2009).
[61] Wu, Y., noue, Y., Sugimura, H., Takai, O., Kato, H., Murai, S., Oda, H., "Characteristics of ultra water-repellent thin films prepared by combined process of microwave plasma-enhanced CVD and oxygen-plasma treatment", Thin Solid Films, 407, 45-49 (2002).
[62] Kim, J. D., Lee, K. H., Kim, K. Y., Sugimura, H., Takaia, O., Wub, Y., Inouec, Y., "Characteristics and high water-repellency of a-C:H films deposited by r.f. PECVD", Surf. Coat. Technol., 162, 135-139 (2003).
[63] Stelmashuk, V., Biederman, H., Slavinska, D., Zemek, J., Trchova, M., "Plasma polymer films rf sputtered from PTFE under various argon pressures", Vacuum, 77, 131-137 (2005).
[64] Nagai, M., Takai, O., Hori, M., "Atmospheric pressure fluorocarbon-particle plasma chemical vapor deposition for hydrophobic film coating", Jpn. J. Appl. Phys., 45, L460–L462 (2006).
[65] Youngblood, J. P., McCarthy, T. J., "Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma", Macromolecules, 32, 6800-6806 (1999).
[66] Riccardi, C., Barni, R., Fontanesi, M., Marcandalli, B., Massafra, M., Selli, E., Mazzone, G., "A SF6 RF plasma reactor for research on textile treatment", Plasma Sources Sci. Technol., 10, 92-98 (2001).
[67] Woodward, I., Schofield, W. C. E., Roucoules, V., Badyal, J. P. S., "Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films", Langmuir, 19, 3432-3438 (2003).
[68] Ying, Z., Xuemei, S., Munan, Y., Bo, W., Hui, Y., "Superhydrophobic surfaces prepared by plasma fluorination of lotus-leaf-like amorphous carbon films", Surf. Rev. Lett., 13, 117-122 (2006).
[69] Fresnais, J., Chapel, J. P., Poncin-Epaillard, F., "Synthesis of transparent superhydrophobic polyethylene surfaces", Surf. Coat. Technol., 200, 5296-5305 (2006).
[70] Gogolides, E., Vlachopoulou, M. E., "Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces", Nanotechnology, 17, 3977-3983 (2006).
[71] Ruiz, A., Valsesia, A., Ceccone, G., Gilliland, D., Colpo, P., Rossi, F., "Fabrication and Characterization of Plasma Processed Surfaces with Tuned Wettability", Langmuir, 23, 12984-12989 (2007).
[72] Vourdas, N., Tserepi, A., "Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing", Nanotechnology, 18, 125304-125310 (2007).
[73] Mundo, R., Palumbo, D. F., d'Agostino, R., "Nanotexturing of polystyrene surface in fluorocarbon plasmas from sticky to slippery superhydrophobicity", Langmuir, 24, 5044-5051 (2008).
[74] Hodak, S. K., Supasai, T., Paosawatyanyong, B., Kamlangkla, K., Pavarajarn, V., "Enhancement of the hydrophobicity of silk fabrics by SF6 plasma", Appl. Surf. Sci., 254, 4744-4749 (2008).
[75] Gao, S. H., Lei, M. K., Liu, Y., Wen, L. S., "CF4 radio frequency plasma surface modification of silicone rubber for use as outdoor insulations", Appl. Surf. Sci., 255, 6017-6023 (2009).
第三章
[1] 劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
[2] Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
[3] Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
[4] Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
[5] Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
[6] Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
[7] Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
[8] Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
[9] Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
[10] Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
第四章
[1] 劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
[2] Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
[3] Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
[4] Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
[5] Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
[6] Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
[7] Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
[8] Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
[9] Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
[10] Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
第五章
[1] 劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
[2] Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
[3] Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
[4] Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
[5] Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
[6] Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
[7] Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
[8] Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
[9] Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
[10] Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
第六章
[1] 劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
[2] Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
[3] Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
[4] Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
[5] Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
[6] Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
[7] Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
[8] Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
[9] Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
[10] Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
第七章
[1] 劉志宏,『應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究』,中原大學化學工程學系,博士論文,民國94年。
[2] Vinogradov, I. P., Dinkelmann, A., Lunk, A., "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)", Surf. Coat. Tech., 174-175, 509-514 (2003).
[3] Biloiu, C., Biloiu, I. A., Sakai, Y., Suda, Y., Ohta, A., "Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties", J. Vac. Sci. Technol. A, 22, 13-19 (2004).
[4] Xu, X., Li, L., Wang, S., Zhao, L., Ye, T., "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure", Plasma Sources Sci. Technol., 16, 372-376 (2007).
[5] Chou, J. S., Lee, S. C., "Effect of porosity on infrared-absorption spectra of silicon dioxide", J. Appl. Phys., 77, 1805-1807 (1995).
[6] Fracassi, F., Lamendola, R., "PECVD of SiOxNyCzHw thin films from hexamethyldisilazane containing feed. Investigation on chemical characteristics and aging behavior", Plasmas Polym., 2, 25-40 (1997).
[7] Han, L. M., Timmons, R., Lee, R. B., W., W., "Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films", J. Vac. Sci. Technol. B, 18, 799-804 (2000).
[8] Kim, M. T., Lee, J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, 173-179 (1997).
[9] Grill, A., Patel, V., "Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane", J. Appl. Phys., 85, 3314- 3318 (1999).
[10] Parsons, G. N., Souk, J. H., Batey, J., "Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition", J. Appl. Phys., 70, 1553-1560 (1991).
指導教授 陳暉(Hui Chen) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明