博碩士論文 944208027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.235.60.197
姓名 黃騰皜(TENG-HAO HUANG)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 一般化自我迴歸條件異質變異數模型在不同分配假設下對波動度與價格分配預測之表現
(The Performance of Alternative GARCH Models on Volatility and Density Prediction)
相關論文
★ 歐元對歐洲股票市場整合之影響:產業實證分析★ 選擇權交易與標的資產報酬及標準差之關係
★ Copula-based GARCH模型於期貨避險之應用★ GARCH-jump模型預測波動性之準確度
★ 個股選擇權市場的流動性不足貼水與波動度差★ 選擇權市場的資訊內涵
★ 資產價格之雙變量機率分配預測★ Model-Free隱含波動度價差之遠期資訊
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般化自我迴歸條件異質變異數模型可對條件分配做不同的假設,本研究比較在不同條件分配假設下,它們在模型配適、波動度預測、與價格分配預測上的表現。我們對模型假設了三種不同的條件分配:常態分配、偏斜 t 分配、與複合卜瓦松(跳躍)分配,以捕捉資產報酬的一般特性。實證分析建立在非線性不對稱一般化自我迴歸條件異質變異數模型的基礎上,並以S&P 500與FTSE 100指數為實證資料。實證結果顯示,在模型配適上的表現,跳躍模型與偏斜 t 模型較常態模型為優;但這樣的優勢不見於低波動度期間。在波動度預測上,跳躍模型表現最佳。而在價格分配預測上,雖然三者差異不多,但跳躍模型與偏斜 t 模型的預測仍比常態模型精確。
摘要(英) This study compares the performance of alternative GARCH models with different conditional distributions on model fitting, volatility forecasting, and density prediction. Three conditional distributions: normal, skewed-t, and compound Poisson, are assumed in order to model the stylized facts of returns in the stochastic innovation. Based on the NGARCH framework, parameters are estimated from the S&P 500 index and FTSE 100 index. The empirical results suggest that the NGARCH-jump model and the NGARCH-skewed-t model significantly raise performance in terms of model fitting, but the differences diminish when models are estimated in relatively low-volatility periods. In volatility forecasting, the NGARCH-jump model outperforms the others. Although the differences are not significant, the skewed-t model and the jump model provide more accurate estimated densities than the normal model.
關鍵字(中) ★ 模型配適
★ 波動度預測
★ 一般化自我迴歸條件異質變異數模型
★ 條件分配
關鍵字(英) ★ Conditional distribution
★ Model fitting
★ GARCH
★ Volatility forecasting
★ Jumps
★ Density prediction
論文目次 1.Introduction--------------------------------------------1
2. Literature Review--------------------------------------4
3. The Empirical Models-----------------------------------6
3.1 The NGARCH Model with Normal Innovations----------6
3.2 The NGARCH Model with a Skewed Student t Distribution----------------------------------------------7
3.3 The NGARCH Model with Jump Dynamics---------------9
4. Performance Measures----------------------------------12
4.1 Model Fitting------------------------------------12
4.2 Volatility Forecasting---------------------------14
4.3 Density Prediction-------------------------------17
5. Data--------------------------------------------------21
6. Empirical Results-------------------------------------25
6.1 Model Fitting------------------------------------25
6.2 Volatility Forecasting---------------------------30
6.3 Density Prediction-------------------------------35
7. Conclusions-------------------------------------------40
Reference------------------------------------------------42
Appendix-------------------------------------------------44
參考文獻 [1] Akgiray, V. (1989), ‘Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecast’, Journal of Business, 62: 55-80.
[2] Andersen, T. G., T. Bollerslev, F. X. Diebold and H. Ebens (2001), ‘The Distribution of Realized Stock Return Volatility’, Journal of Financial Economics, 61: 43-76.
[3] Berkowitz, J. (2001), ‘Testing Density Forecasts, With Applications to Risk Management’, Journal of Business and Economic Statistics, 19: 465-474.
[4] Blair, B. J., S. H. Poon and S. J. Taylor (2001), ‘Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High-frequency Index Returns’, Journal of Econometrics, 105: 5-26.
[5] Bollerslev, T. (1986), ‘Generalized Autoregressive Conditional Heteroskedasticity’, Journal of Econometrics, 31: 307-327.
[6] Bollerslev, T. (1987), ‘A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return’, Review of Economics and Statistics, 69: 542-547.
[7] Chan, W. H. and J. M. Maheu (2002), ‘Conditional Jump Dynamics in Stock Market Returns’, Journal of Business and Economic Statistics, 20: 377-389.
[8] Christoffersen, P. and K. Jacobs (2004), ‘Which GARCH Model for Option Valuation?’, Management Science, 50: 1204-1221.
[9] Diebold, F. X., T. A. Gunther and A. S. Tay (1998), ‘Evaluating Density Forecasts with Applications to Financial Risk Management’, International Economic Review, 39: 863-883.
[10] Duan, J. C., P. Ritchken and Z. Sun (2005), ‘Jump Starting GARCH: Pricing and Hedging Options with Jumps in Returns and Volatilities’, Working paper, Toronto University.
[11] Duan, J. C., P. Ritchken and Z. Sun (2006), ‘Approximating GARCH-jump Model, Jump-diffusion Processes and Option Pricing’, Mathematical Finance, 16: 21-52.
[12] Engle, R. F. (1982), ‘Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation’, Econometrica, 50: 987-1007.
[13] Engle, R. F. and V. K. Ng (1993), ‘Measuring and Testing the Impact of News on Volatility’, Journal of Finance, 48: 1749-1778.
[14] Glosten, L. R., R. Jagannathan and D. E. Runkle (1993), ‘On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks’, Journal of Finance, 48: 1779-1801.
[15] Hensen B. E. (1994), ‘Autoregressive Conditional Density Estimation’, International Economic Review, 35: 705-730.
[16] Maheu, J. M. and T. H. McCurdy (2004), ‘News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns’, Journal of Finance, 59: 755-793.
[17] Nelson, D. B. (1991), ‘Conditional Heteroscedasticity in Asset Returns: A New Approach’, Econometrica, 59: 347-370.
[18] Poon, S. H. and C. W. J. Granger (2003), ‘Forecasting Financial Market Volatility: A Review’, Journal of Economic Literature, 41: 478-539.
[19] Press, S. J. (1967), ‘A Compound Events Model for Security Prices’, Journal of Business, 40: 317-335.
[20] Taylor, S. J. (2005), Asset Price Dynamics, Volatility, and Prediction, Princeton and Oxford: Princeton University Press.
[21] Wang, Y. H. (2006), ‘The Impact of Jump Dynamics on Density Prediction’, Working paper, National Central University.
[22] Wang, Y. H. and C. C. Hsu (2007), ‘Short-memory, Long-memory and Jump Dynamics in Global Financial Markets’, Journal of Financial Studies, 15: 43-68.
指導教授 王耀輝(Yaw-Huei Wang) 審核日期 2007-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明