博碩士論文 944209002 詳細資訊


姓名 高瑩芳(Ying-Fang Kao)  查詢紙本館藏   畢業系所 經濟學系
論文名稱 財務市場顯著異質性: 簡單代理人基財務模型之實證研究
(Significance of Heterogeneity in Financial Markets: Empirical Studies from Simple Agent-Based Financial Models)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文利用對代理人基財務模型的參數估計以檢定財務市場的顯著異質性,並且試圖從所估計的參數中觀察異質代理人的行為趨勢以及市場動態。代理人基財務模型己被多方面證實有能力解釋總體市場所看到的突現現象,然而模型的設計在文獻上存在相當大的岐異。截至目前為至,並沒有文獻真正在探討究竟財務市場需要多少異質代理人以至於能複製總體現象,本篇論文的貢獻即是在嘗試回答這個問題。受到適應性信念系統(Adaptive Belief System)這一隻文獻的鼓舞,本篇論文隨著主流設計,在典型的兩類人模型 (基本面交易者與順勢技術分析者) 上外加一個逆勢技術分析者,進而構成典型的三類人模型。因為離散變數存在的原因,本篇論文採納強大的遺傳演算法做法直接估計的最適化工具。從10 筆股票指數及21筆匯率的兩年期日資料的估計結果,本篇論文發現,三類型的模型並沒有顯著優勢。然而估計出的市場動態仍呈現值得進一步探究的有趣現象。
摘要(英) It has been long asked whether agent-based model can be a useful tool for forecasting, instead of just replicating or growing the stylized facts. In other words, in addition to provide a bottom-up mechanism to explain the stylized fact as an emergent outcome, agent based modeling has drawn
further interests with regards to its estimation and prediction power. The recent research trend suggests that one can be cautiously optimistic about this possibility. This is particular so given the recent contribution by de Jong et al. (2006) and Manzan and Westerhoff (2007).
Before the forecasting power of agent-based financial models are examined, more basic knowledge base should be carefully explore. Accordingly, this paper is devoted to an econometric study of the simple agent-based financial markets, which are based on the few-type designs. In particular, we follow the essential spirit of the adaptive belief system proposed by Brock and Hommes (1997) and Brock and Hommes (1998) in the context of fundamentalists-momentum trader and fundamentalists-momentum trader-contrarians formulation. The general question which con-
cerns us is the significance of the number of types of agents, in particular, its contribution to replicating financial time series. A related issue, and a core issue, concerns the minimum number of types (clusters) required to replicate financial dynamics (Aoki, 2002). We are still uncertain about the general formulation of the issue because each type of financial agent can be designed
in different ways. Hence, narrowing down the issue to the comparison between fundamentalist-chartist models and fundamentalist-chartist-contrarian models seems to be necessary at this stage. In this paper, we use financial data from 10 stock markets and 21 foreign exchange markets.
Our econometric estimation of the simple agent-based financial markets can be related to Boswijk et al. (2007) and Amilon (2008). However, since the settings of the model are not exactly the same, our estimation method and technique are different from theirs. Because several parameters related to financial agents’ behaviors, as emphasized in literature of heterogeneous agent financial
model, are discrete variables and lead to a complex and nonlinear objective function (sum of squared error). Given this nature, the common numerical algorithms, which depend on the derivative of the objective function, is not available. Dorsey and Mayer (1995) suggest the use of
genetic algorithms to deal with such situations and in this paper, we follow this recommendation.
One of our main findings from the limited experiments is that given fundamentalists and chartists, additional contribution from contrarians is insignificant or not evident. While we do not have evidence in support of the 3-type model, the inclusion of the contrarians does destabilize our estimation in many ways. Besides, we are asking what kind of questions we can ask and how
much we can learn from the agent-based financial markets with empirical data. Some specific questions asked in this paper may be considered as a special case of what can be more generally proposed. For example, we may consider the role of trading mechanism in the observed financial
time series, the realistic time horizon perceived by the financial agents, and the influence of risks
in agents’’decision.
關鍵字(中) ★ 適應性信念系統
★ 代理人基財務模型
★ 基本面交易者
★ 順勢技術分析者
★ 逆勢技術分析者
★ 遺傳演算法
關鍵字(英) ★ Adaptive Belief System
★ Agent-Based Financial Model
★ Fundamentalist-Momentum
論文目次 1 Introduction and Motivation 1
2 Literature Review 5
2.1 ANT, IAH Models and Indirect Estimation . . . . . . . . . . . . . . . . . . . . . 5
2.2 ABS and Direct Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 The Agent-Based Financial Models 13
3.1 Price Dynamics and Evolution of Market Fraction . . . . . . . . . . . . . . . . . 13
3.2 Market Maker Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Heterogeneous Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Profit Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Risk Aversion and Risk Perception . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Walrasian Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 The Econometric Model and Genetic Algorithm 21
4.1 Walrasian Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Definition and Initial Values of Parameters . . . . . . . . . . . . . . . . . . . . . 25
4.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.1 Using genetic algorithm as searching strategy . . . . . . . . . . . . . . . . 31
4.4.2 Compare GA with Random . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Empirical Results 37
5.1 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 The Sensitivity of Parameters to Adding Contrarian . . . . . . . . . . . . . . . . 45
5.3 Measure of Dispersion of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Distributions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.1 Fitness Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.2 Intensity of Choice and Market Fraction . . . . . . . . . . . . . . . . . . . 54
5.4.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.4 Risk Perception and Risk Aversion . . . . . . . . . . . . . . . . . . . . . . 60
5.4.5 Behavior Rules of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Extensive Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.1 The Different Third Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.2 Compare Dispersion of Parameters With Different Sample Period . . . . . 71
5.5.3 Possible Recipe for Uneven Average Market Fraction . . . . . . . . . . . . 74
6 Concluding Remarks 77
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Research of Next Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A Tables of Estimates of Parameters 81
A.1 Samples form 2005.1.1 to 2006.12.31 . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Samples from 2001.1.1 to 2001.12.31 . . . . . . . . . . . . . . . . . . . . . . . . . 84
B Distribution of Estimates from 2005.1.1-2006.12.31 87
B.1 Sensitivity of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2 Heterogeneity of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
C Extensive Issues 109
D Pseudo Code and Other Estimating Models and Methods 111
D.1 Pseudo Code under Walrasian scenario . . . . . . . . . . . . . . . . . . . . . . . . 111
D.2 Estimation Method under Market Maker . . . . . . . . . . . . . . . . . . . . . . . 113
D.3 Multiple Run and Bootstrap Method . . . . . . . . . . . . . . . . . . . . . . . . . 114
Reference 115
參考文獻 Alfarano, Simone, Lux, Thomas, andWanger, Friedrich (2007), “Empirical validation of stochas-
tic models of interacting agents. a ”maximally skewed” noise trader model”, The European
Physical Journal B, 55, 183–187.
Allen, Helen and Taylor, Mark P. (1990), “Charts, noise and fundamentalists in the london
foreign exchange market”, The Economic Journal, 100(400), 49–59.
Amilon, Henrik (2008), “Estimation of an adaptive stock market model with heterogeneous
agents”, Journal of Empirical Finance, 15, 342–362.
Aoki, Masanao (2002), “Open model of share markets with two dominant types of participants”,
Journal of Economic Behavior & Organization, 49, 199–216.
Arthur, W.B., Holland, John, LeBaron, B., Palmer, R., and Taylor, P. (1997), “Asset pricing
under endogenous expectations in an artificial stock market”, in W.B. Arther, S Durlauf, and
D Lane (eds.), The economy as an envolving complex system II, Addision-Wesley, Reading,
MA.
Beja, Avraham and Goldman, M. Barry (1980), “On the dynamic behavior of prices in disequi-
librium”, Journal of Finance, 35, 235–247.
Boswijk, H. Peter, Hommes, Cars H., and Manzan, Sebastiano (2007), “Behavioral heterogeneity
in stock prices”, Journal of Economic Dynamics & Control, 31, 1938–1970.
Brock, W., Lakonishok, J., and LeBaron, B. (1992), “Simple technical trading rules and the
stochastic properties of stock returns”, Journal of Finance, XL VII(5), 1731–1764.
Brock, William A. and Hommes, Cars H. (1997), “A rational route to randomness”, Economet-
rica, 65(5), 1059–1095.
(1998), “Heterogeneous beliefs and routes to chaos in a simple asset pricing model”,
Journal of Economic Dynamics and Control, 22, 1235–1274.
Brock, William A., Hommes, Cars H., and Wagener, Florian O.O. (2005), “Evolutionay dynam-
ics in market with many trader types”, Journal of Mathematical Economics, 41, 7–42.
Chan, N.T., LeBaron, B., Lo, A.W., and Poggio, T. (1999), “Agent-based models of financial
markets: A comparison with experimental markets”, MIT Artificial Markets Project.
Chen, She-Heng, Lux, Thomas, and Marchesi, Michele (2001), “Testing for non-linear structure
in an artificial financial market”, Journal of Economic Behavior & Organization, 46, 327–342.
Chen, Shu-Heng, Chang, Chia-Ling, and Du, Ye-Rong (2008), “Agent-based economic models
and econometrics”, Knowledge Engineering Review, forthcoming.
Chen, Shu-Heng and Yeh, Chia-Hsuan (2002), “On the emergent properties of artificial stock
markets : the efficient market hypothesis and the rational expectations hypothesis”, Journal
of Economic Behavior & Organization, 49, 217–239.
Chiarella, Carl and He, Xue-Zhong (2002), “Heterogeneous beliefs, risk and learning in a simple
asset pricing model.”, Computational Economics, 19, 95–132.
(2003), “Heterogeneous beliefs, risk and learning in a s simple asset-pricing model with
a market maker”, Macroeconomic Dynamics, 7, 503–536.
Chiarella, Carl, He, Xue-Zhong, and Hommes, Cars (2006), “A dynamic analysis of moving
average rules”, Journal of Economic Dynamics & Control, 30, 1729–1753.
Cont, R. (2001), “Empirical properties of assect return: stylized facts and statistical issue”,
Quantitative Finance, 1, 223–236.
Dacorogna, M. M., M´ ’u, U. A., Just, C., Pictet, O. V., Olsen, R. B., and Ward, J. R. (1995),
“Heterogeneous real-time trading strategies in the foreign exchange market”, The European
Journal of Finance, 1, 383–403.
Day, R. and Huang, W. (1990), “Bulls, bears and market sheep”, Journal of Economic Behavior
and Organization, 14, 299–329.
De Grauwe, Paul and Grimaldi, Marianna (2006), The Exchange Rate in a Behavioral Finance
Framework, Princeton University Press, Princeton and Oxford.
de Jong, Eelke, Verschoor, William F.C., and Zwinkels, Remco C.J. (2006), “Heterogeneity of
agents and exchange rate dynamics : Evidence from the ems”, Radboud University Nijmegen.
De Long, J. Bradford, Shleifer, Andrei, Summers, Lawrence H., and Waldmann, Robert J.
(1990), “Noise trader risk in financial markets”, Journal of Political Economy, 98, 703–738.
Diks, Cees and van der Weide, Roy (2005), “Herding, a-synchronous updating and heterogeneity
in memory in a cbs”, Journal of Economic Dynamics Control, 29, 741–763.
Dorsey, Robert E. and Mayer, Walter J. (1995), “Genetic algorithms for estimation problems
with multiple optima, nondifferentiability, and other irregular features”, Journal of Business
& Economics Statistics, 13, 53–66.
Farmer, J. Doyne (2002), “Market force, ecology, and evolution”, Industrial and Corporate
Change, 11, 895–953.
Farmer, J. Doyne and Joshi, Shareen (2002), “The price dynamics of common trading strategies”,
Journal of Economic Behaviour & Organization, 49, 149–171.
Frankel, Jeffrey A. and Froot, Kenneth A. (1990), “Chartists, fundamentalists, and trading in
the foreign exchange market”, The American Economic Review, 80, 181–185.
Gaunersdorfer, Andrea (2000), “Endogenous fluctuations in a simple asset pricing model with
heterogeneous agents”, Journal of Economic Dynamics & Control, 24(5-7), 799–831.
Goldberg, David E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley.
Gourieroux, C. and Monfort, A. (1996), Simulation-based econometric methods, Oxford Univer-
sity Press.
Hartley, James E. (1997), The Representative Agent in Macroeconomics, Routledge.
He, Xue-Zhong and Li, Youwei (2005), “Heterogeneity, profitability and autocorrelations”,
Quantitative Finance Research Centre, University of Technology, Sydney, Research Paper
147, 1–45.
(2007), “Power-law behaviour, heterogeneity and trend chasing”, Journal of Economic
Dynamics & Control, 31, 3396–3426.
Holland, J. H. (1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis
With Application to Biology, Control, and Artificial Intelligence, Bradford Books.
Hommes, Cars H. (2006), Heterogeneous Agent Models in Economics and Finance, volume 2 of
Handbook of Comutational Economics, chapter 23, 1109–1186, Elsevier B.V.
Izumi, Kiyoshi, Nakamura, Shigeo, and Ueda, Kazuhiro (2005), “Development of an artificial
market model based on a field study”, Information Sciences, 170, 35–63.
Izumi, Kiyoshi and Ueda, Kazuhiro (2002), “Using an artificial market approach to analyze
exchange rate scenarios”, in Shu-Heng Chen (ed.), Evolutionary Computation in Economics
and Finance, volume 100 of Studies in Fuzzines and Soft Computing, chapter 8, 135–157,
Physica-Verlag.
Kahneman, D. and Tversky, A. (1979), “Prospect theory: an analysis of decisions under risk”,
Econometrica, 47, 313–327.
Kaizoji, T. (2003), “Speculative bubbles and fat tail phenameno in a heterogeneous agent
model”, in W. Barnette, C. Deissenberg, and G. Feichinger (eds.), Economic Complexity,
volume ISETE, 259–275, Elsevier, Amsterdam.
Kirman, A. (1993), “Ants, rationality, and recruitment.”, Quarterly Journal of Economics, 108,
137–156.
LeBaron, B. (2005), “Building the santa fe artificial stock market”, in Agent-based Theory,
Languages, and Experiments, Rooutledge Publishing. In press.
LeBaron, Blake (2001), “Evolution and time horizons in an agent-based stock market”, Macroe-
conomic Dynamics, 5, 225–254.
118 BIBLIOGRAPHY
(2006), Agent-Based Computational Finance, chapter 24, 1187–1233, Elsevier B.V.
Levy, Moshe, Levy, Haim, and Solomon, Sorin (2000), Microscopic Simulation of Financial
Markets - From Investor Behavior to Market Phenomena, Academic Press.
Li, H. and Rosser, J.B. (2004), “Market dynamics and stock price volatility”, European Physical
Journal B, 39, 409–413.
Lux, Thomas (1995), “Herd behavior, bubbles and crashes”, The Economic Journal, 105, 881–
896.
(1998), “The socis-economic dynamics of speculative markets : interacting agents, chaos,
and the fat tails of return distributions”, Journal of Economic Behavior & Orginazation, 33,
143–165.
Lux, Thomas and Marchesi, Michele (1999), “Scaling and criticality in a stochastic multi-agent
model of a financial market”, Nature, 397, 498–500.
(2000), “Volatility clustering in financial markets : A microsimulation of interacting
agents”, International Journal of Theoretical and Applied Finance, 3(4), 675–702.
Manzan, Sebastiano and Westerhoff, Frank H. (2007), “Heterogeneous expectation, exchange
rate dynamics and predictability”, Journal of Economic Behavior & Organization, 64, 111–
128.
Palmer, R., Arthur, W. B., Holand, J.H, LeBaron, B., and Taylor, P. (1994), “Artificial economic
life: A simple model of a stock market”, Physica D, 75, 264–274.
Rubinstein, Ariel (2006), “Comments on behavioral economics”, Advances in Economic Theory,
II, 246–254.
Sansone, Alessandro and Garofalo, Giuseppe (2007), “Asset price dynamics in a financil market
with heterogeneous trading strategies and time delays”, Pysica A, 382, 247–257.
Schelling, Thomas C. (1978), Micromotives and Macrobehavior, W.W. Norton & Company.
Stern, Steven (1997), “Simulation-based estimation”, Journal of Economic Literature, 35(4),
2006–2039.
Taylor, Stephen J. (2005), Asset Price Dynamics, Volatility, and Prediction, Princeton Univer-
sity Press.
Winker, Peter and Gilli, Manfred (2001), “Indirect estimation of the parameters of agent based
models of financial markets”, Technical report, School of Business Administration, Interna-
tional University in German, Bruchsal, 03.
Winker, Peter, Gilli, Manfred, and Jeleskovic, Vahidin (2007), “An objective function for simu-
lation based inference on exchange rate data”, Journal of Economic Interaction and Coordi-
nation, 2, 125–145.
Yang, Jian (2002), “The efficiency of an artificial double auction stock market with neural learn-
ing agents”, in Shu-Heng Chen (ed.), Evolutionary Computation in Economics and Finance,
volume 100 of Studies in Fuzzines and Soft Computing, chapter 5, 85–105, Physica-Verlag.
指導教授 陳樹衡、姚睿
(Shu-Heng Chen、Reuy Yau)
審核日期 2008-11-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡