博碩士論文 945201023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.145.196.61
姓名 簡佩怡(Pei-yi Jian)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於2.5GHz鎖相迴路之內建抖動量測電路
(Built-In Jitter Measurement Circuit for 2.5GHz Phase-Locked Loop)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著半導體製程之進步,積體電路發展已驅向系統單晶片化。當系統整合於同一晶片時即需要準確的時脈訊號,通常會選用鎖相迴路來當做參考時脈來源。因此鎖相迴路是單晶片系統中重要同步單位,而其時脈之抖動特性即為其重要效能。以往測試鎖相迴路效能多用外部儀器來做時脈抖動量測,但是今日因鎖相迴路操作頻率之提升,測試儀器成本大大提高。此外利用儀器量測時外部雜訊亦會干擾測試結果,因此產生了內建時脈抖動量測電路。
本論文提出的內建時脈抖動量測電路以減少測試時間、晶片面積及降低雜訊影響為設計目標。我們以游標尺延遲線電路加上自我取樣方法來實現時脈抖動量測電路。電路分為二級,首先由一週期延遲電路將時脈訊號快速延遲一週期,接著利用抖動量測電路做抖動量測。加上一週期延遲電路後即不再需要參考時脈,量測結果可不受參考時脈雜訊影響,並且能減少電路硬體消耗及加快測試時間。
此時脈抖動量測電路是利用聯電90奈米製程,完成一應用於2.5GHz鎖相迴路之內建時脈抖動量測電路,電路解析度為5.3ps。
摘要(英) As the improvement of semiconductor technology, System-On-Chip(SOC) is the current trend of VLSI circuit. When many systems were integrated into a chip, the reference clock signal must be accurate. We usually choose Phase-Locked Loop(PLL) circuit as the reference clock source. Since PLL is the essential synchronization element in SOC, the jitter characteristic is the most important property. In the past, the jitter was measured by the external equipment. But with the increase of PLL operating frequency, the cost of test equipment has greatly raised. Besides, the external equipment may induce noise, so the built-in self test circuit is proposed.
The design purpose of this thesis is designing a built-in self test circuit with less test time, smaller chip area and lower power noise effect. We use vernier delay line circuit with self-sample method to accomplish this work. The circuit is composed of two stages. The first stage is one period delay circuit. It can delay input clock signal one period rapidly. The second stage is jitter measurement circuit. It has high resolution when measuring jitter. With the one period delay circuit, the measurement result will not be affected by the reference clock noise, reduce some chip area and speed up the test time
This built-in self test circuit for 2.5GHz PLL is implemented in UMC 90nm CMOS technology, the circuit resolution is 5.3ps.
關鍵字(中) ★ 游標尺延遲線
★ 抖動量測
★ 內建自我測試
關鍵字(英) ★ vernier delay line
★ jitter measurement
★ built-in self test
論文目次 摘 要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 時脈抖動定義 3
2.1 時脈抖動的定義(Jitter Definition) 3
2.1.1 週期對週期時脈抖動(JCC) 3
2.1.2 週期時脈抖動(JPER) 4
2.1.3 長期的時脈抖動(JLONG) 5
2.2 時脈抖動分佈圖(Jitter Histogram) 6
第三章 時脈抖動量測方法文獻回顧 8
3.1 傳統Off-Chip時脈抖動量測方法 8
3.2 On-Chip時脈抖動量測 9
3.3 On-Chip時脈抖動量測相關研究 9
3.3.1 時間數位轉換器(Time-to-Digital Converter)[8] 10
3.3.2 延遲串列方法(Delay Chain Method) 11
3.3.3 游標尺延遲線方法(Vernier Delay Line Method)[10] 13
3.3.4 改良式游標尺延遲線方法 15
3.3.5 游標尺振盪器方法(Vernier Ring Oscillator Method)[6] 15
3.3.6 數位時脈抖動量測方法之比較 17
第四章 改良式鎖相迴路內建自我測試電路 18
4.1 自我取樣方法 18
4.2 改良式時脈抖動量測電路架構圖 19
4.3 改良式時脈抖動量測電路規格訂定 20
4.4 改良式時脈抖動量測電路子電路 23
4.4.1 相位偵測電路 23
4.4.2 一週期延遲產生電路 24
4.4.3 抖動量測電路 25
4.4.4 控制訊號產生器電路 28
4.4.5 計數器電路 28
4.4.6 振盪器電路 30
4.5 改良式時脈抖動量測電路全電路操作 31
4.5.1 校正模式(Calibration Mode) 32
4.5.2 量測模式(Measurement Mode) 33
4.5.3 量測時間 34
第五章 晶片實現與模擬 36
5.1 相位偵測電路 36
5.2 一週期延遲電路延遲元件 38
5.3 一週期延遲電路 40
5.4 抖動量測電路延遲元件 41
5.5 抖動量測電路 42
5.6 控制訊號產生器電路 44
5.7 計數器電路 45
5.8 全電路模擬 46
5.8.1 全電路佈局 46
5.8.2 校正模式模擬 48
5.8.3 量測模式模擬 49
5.8.4 電路規格與比較表 51
第六章 結論 52
6.1 結論 52
6.2 未來改進方向 52
參考文獻 54
參考文獻 [1] T. Okayasu, M. Suda, and K. Yamamoto, “CMOS Circuit Technology for Precise GHz Timing Generator,” Proc. of Int. Test Conf., pp. 894-902, 2002
[2] C.C. Tsai, “On-Chip Jitter Measurement for Phase-Locked Loop,” MS. Thesis, National Chiao Tung University, Institute of Electronics Engineering, Taiwan, 2002.
[3] F. Azais, M. Renovell, Y. Bertrand, A. Ivanova, and S. Tabatabaei, “A Unified Digital Test Technique for PLLs: Catastrophic Faults Covered,” Proc. of Int. Mixed Signal Testing Workshop, pp. 269-292, June 1999.
[4] K. A. Taylor, B. Nelson, A. Chong, H. Lin, E. Chan, M. Soma, “Special Issue on BIT CMOS Built-In Test Architecture for High-Speed Jitter Measurement,” IEEE Trans. on Instrumentation and Measurement, VOL. 54, NO. 3, pp.975-987, June 2005
[5] Nelson Soo, “Jitter Measurement Techniques,” Pericom Application Brief AB36, Nov.2000.
[6] A. H. Chan and G.W. Roberts, “A Synthesizable, Fast and High-Resolution Timing Measurement Device Using a Component-Invariant Vernier Delay Line” Proc. of Int. Test Conf., pp. 858-867, Nov 2001.
[7] Bozena Kaminska, “BIST Means More Measurement Options for Designers,” EDN Magazine, Dec. 2000.
[8] T Xia, J. C. Lo, “Time-to-Voltage Converter for On-Chip Jitter Measurement,” IEEE Trans. on Instrumentation and Measurement, Vol.52, pp. 1738-1748, Dec. 2003.
[9] S. Stephen and R. Audin, “BIST for Phase-Locked Loops in Digital Applications” Proc. of Int. Test Conf., pp. 532-540, Sep 1999.
[10] P. Dudek, S. Szczepanski, and J. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” IEEE J. Solid-State Circuits, vol. 35, pp. 240-247, Feb. 2000.
[11] K. H. Cheng, C. W. Huang and S. Y. Jiang, “Self-Sampled Vernier Delay Line for Built-in Clock Jitter Measurement,” IEEE International Symposium on Circuits and Systems, ISCAS, pp. 1591-1594, May 2006
[12] T. Xia, H. Zheng, J. Li, A. Ginawi, "Self-Refereed On-Chip Jitter Measurement Circuit Using Vernier Oscillators," isvlsi, pp. 218-223, 2005.
[13] S. Sunter, A. Roy, “On-Chip Digital Jitter Measurement, from Megahertz to Gigahertz,” IEEE, Design & Test of Computers, pp. 314-321, July 2004
[14] B. Nikolai, V. G. Oldobdzija, V. Stojanovic, W. Jia, J. K. Chiu and M. Mi. Leung, “Improved Sense-Amplifier-Based Flip-Flop: Design and Measurements,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 876 -884, Jun 2000
[15] M. Mansuri, C. K. Yang, “A Low-Power Adaptive Bandwidth PLL and Clock Buffer With Supply-Noise Compensation,” IEEE Journal of Solid-State Circuits, vol. 38, NO. 11, November 2003
[16] A. H. Chan and G. W. Roberts, “A Jitter Characterization System Using a Component-Invariant Vernier Delay Line,” VLSI Systems, IEEE Transactions on Volume 12, Issue 1, pp.79-95 , Jan. 2004
[17] S. Tabatabaei and A. Ivanov, “Embedded timing analysis: A SoC infrastructure” IEEE Design & Test of Computers, vol. 19, pp. 22-34, May-June 2002.
[18] R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, “1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-nm CMOS,” IEEE Trans. on Circuits and Systems, vol. 53, NO. 3, March 2006
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2007-10-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明