博碩士論文 945201027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.226.243.36
姓名 陳靖騰(Ching-teng Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 地面數位電視基頻接收器之同步電路設計
(Design of Synchronization for DVB-T Baseband Receiver)
相關論文
★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器★ 地面數位電視廣播基頻接收器之載波同步設計
★ 適用於通訊系統之參數化數位訊號處理器核心★ 以正交分頻多工系統之同步的高效能內插法技術
★ 正交分頻多工通訊中之盲目頻域等化器★ 兆元位元率之平行化可適性決策回饋等化器設計與實作
★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design
★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計★ 低複雜度與高速多速率多階有限脈衝響應數位濾波器設計技術
★ 以FPGA實現DVB-T/H系統之二維一維與AGC-CR通道等化技術★ 適用於IEEE 802.16系統並運用極座標架構之低複雜度MIMO STBC頻域等化器設計
★ HF頻帶無線供電植入式系統之高效率前端電路分析與設計★ 應用於數位視頻廣播系統中具有自動增益控制之接受端濾波器設計
★ 適用IEEE 802.16e標準之多碼率單埠記憶體LDPC解碼器設計★ 應用於WiMAX通訊系統之Σ-Δ分數型頻率合成器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地面數位電視廣播(DVB-T)目前在台灣已成為未來數位電視的主流規格。DVB-T 乃是架構在正交分頻多工(OFDM)系統上。而同步的非理想效應對於OFDM 系統的正交性有很大的影響,失去正交性的OFDM 系統會因為符碼間的干擾(ISI)與子載波間的干擾(ICI)而遭受到破壞。因此如何快速並且準確的完成同步動作便是一個重要的議題。
在本論文中,針對不同的非理想同步效應做介紹,包含符碼邊界位移同步、載波頻率偏移同步以及取樣頻率偏移同步。並且針對處理這些效應的演算法進行比較與分析,以及使用Matlab 與C 語言建立模擬平台。在整數型的載波頻率偏移估測電路採用更為節省記憶體的架構來節省面積,並且對於取樣頻率偏移補償電路採用內插器的方式實現以完成同步電路全數位化的目的。最後將所有的同步
電路進行整合與實現。
摘要(英) The European terrestrial broadcasting standard DVB-T has been adopted an official digital TV speciation in Taiwan. The modulation scheme for DVB-T is orthogonal frequency division multiplexing (OFDM). And the non-ideal effects of synchronization influence the orthogonality between subcarriers very much. And without orthogonality, the OFDM system will introduce Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI), and it will be destroyed by ISI and ICI.
Therefore, how to synchronize rapidly and exactly will be the major topic in our system. In this thesis, we will discuss these different non-ideal synchronization effects, including symbol boundary offset, carrier frequency offset and sampling frequency offset. We will compare and analyze the algorithms which detect these non-ideal synchronization effects, and build up a simulation platform by Matlab and C program. In integer carrier frequency offset detection circuit, we reduce chip area by using proposed architecture. And we use interpolator in sampling frequency offset compensation for all digital synchronization circuit. Finally, we integrate and
implement all synchronization circuits.
關鍵字(中) ★ 同步
★ 載波頻率偏移
★ 取樣頻率偏移
★ 地面數位電視
★ 正交分頻多工
★ 數位電視
關鍵字(英) ★ OFDM
★ DVB-T
★ Synchronization
★ CFO
★ TFO
★ Boundary
論文目次 第一章 序論..................................................................................................................1
1.1 數位電視廣播之發展現況.............................................................................1
1.2 研究動機.........................................................................................................2
1.3 論文結構介紹.................................................................................................2
第二章 數位電視地面廣播(DVB-T)規格標準...........................................................3
2.1 正交分頻多工(OFDM)調變介紹..................................................................3
2.1.1 OFDM 之數學模型..............................................................................4
2.1.2 Guard Interval and Cyclic Prefix ..........................................................5
2.1.3 OFDM 系統之優缺點比較..................................................................6
2.2 DVB-T 系統規格簡介....................................................................................6
2.2.1 傳輸模式2K 與8K 之比較................................................................8
2.2.2 Cyclic Prefix .........................................................................................9
2.2.3 參考訊號(reference signal)之介紹...................................................10
2.3 設計流程........................................................................................................11
第三章 DVB-T 系統同步架構設計..........................................................................12
3.1 DVB-T 同步架構簡介..................................................................................12
3.2 符碼邊界同步...............................................................................................13
3.2.1 符碼邊界位移效應............................................................................13
3.2.2 符碼邊界位移偵測架構....................................................................15
3.3 載波頻率偏移同步.......................................................................................16
3.3.1 載波頻率偏移效應............................................................................16
3.4 載波頻率偏移估測.......................................................................................18
3.4.1 分數型載波頻率偏移估測................................................................19
3.4.2 整數型載波頻率偏移估測................................................................21
3.4.3 載波頻率偏移追蹤............................................................................24
3.5 取樣時脈偏移同步.......................................................................................27
3.5.1 取樣時脈偏移效應............................................................................27
3.5.2 取樣時脈偏移估測............................................................................29
3.5.3 取樣時脈偏移補償............................................................................30
3.6 模擬結果.......................................................................................................38
3.6.1 符碼邊界同步.....................................................................................41
3.6.2 載波頻率同步....................................................................................42
3.6.3 取樣時脈同步....................................................................................45
3.6.4 星座圖模擬結果................................................................................48
第四章 DVB-T 之定點數模擬及電路實現..............................................................49
4.1 同步電路簡介...............................................................................................49
4.2 定點數模擬...................................................................................................49
4.3 數位座標旋轉器(CORDIC)之演算法及架構.............................................54
4.4 符碼邊界與分數型載波頻率偏移估測電路...............................................58
4.5 整數型載波頻率偏移估測電路...................................................................60
4.6 聯合載波頻率與取樣時脈偏移追蹤電路...................................................66
4.7 取樣時脈偏移補償電路...............................................................................69
第五章 硬體實作及模擬驗證結果............................................................................71
5.1 RTL Verilog 模擬驗證結果...........................................................................71
5.2 FPGA 驗證平台............................................................................................78
5.3 FPGA 驗證結果............................................................................................79
第六章 結論與展望....................................................................................................84
參考文獻......................................................................................................................85
附錄..............................................................................................................................88
附錄A 符碼邊界位移效應對於OFDM 系統之影響.......................................88
附錄B 載波頻率偏移效應對於OFDM 系統之影響.......................................90
附錄C 取樣時脈偏移效應對於OFDM 系統之影響.......................................94
參考文獻 [1] 賴柏洲、林志星、魏明照、林世欽,數位電視廣播與製作系統,初版,全華科技圖書股份有限公司,台北市,民國92年。
[2] 賴柏洲、林世欽,數位電視廣播技術與原理,初版,全華科技圖書股份有限公司,台北市,2004年。
[3] 賴柏洲、林世欽,數位電視廣播應用與服務訊息,初版,全華科技圖書股份有限公司,台北市,2004年。
[4] 賴柏洲、林世欽,數位電視技術原理,初版,全華科技圖書股份有限公司,台北市,2006年。
[5] ”ETSI EN 300 744 V1.5.1 Digital Video Broadcasting (DVB) Framing structure, channel coding and modulation for digital terrestrial television”
[6] Duˇsan Matia, ”OFDM as a possible modulation technique for multimedia applications in the range of mm waves”, 10/30/98/TUS-TVS.
[7] Merouane Debbah, ”Short introduction to OFDM”, Dec 31, 2002.
[8] S. B. Weinstein and P. M. Ebert, ”Data transmission by frequency-division multiplexing using the discrete Fourier transform.”, IEEE Trans. Commun., COM-19(5):628-634, Oct.1971.
[9] A. Peled and A. Ruiz, ”Frequency domain data transmission using reduced computational complex algorithms.” In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Pages 964-967, Denver, Co, 1980.
[10] Hikmet Sari, Georges Karam, and Isabelle Jeanclaude, ”Transmission Techniques for Digital Terrestrial TV Broadcasting” IEEE Communications Magazine, February 1995
[11] Jung-Jin Kim, Young-Jae Ryu, Hae-Sock Oh, and Dong-Seog Han ”Frame Selection Algorithm with Adaptive FFT Input for OFDM systems” IEEE 2002. 63
[12] T. Pollet and M. Moenecaley, ”Synchronizability of OFDM signals.”, In Proc Globecom, volume 3, pages 2054-2058, Singapore, Nov. 1995.
[13] T. Pollet, M. van Bladel, and M. Moeneclaey. ”BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise.” IEEE Trans. Commum., 43(2/3/4):191-193, Feb/Mar/Apr 1995.
[14] Ove Edfors, Magnus Sandell, Jan-Jaap van de Beek, Daniel Landstr¨om, Frank Sj¨oberg, ”An introduction to orthogonal frequency-division multiplexing” September 1996.
[15] Magnus Sandell and Ove Edfors, ”A comparative study of pilot-based channel estimators for wireless OFDM”, September 1996.
[16] Meng-han Hsieh and Che-Ho Wei, ”Channel Estimation for OFDM Systems Based on Comb-type Pilot Arrangement In Frequency Selective Fading Channels”
[17] Fredrik Tufvesson and Torleiv Maseng, ”PILOT ASSISTED CHANNEL ESTIMATION FOR OFDM IN MOBILE CELLULAR SYSTEMS” 1997, IEEE.
[18] ”Information technology - Generic coding of moving pictures and associated audio information”, ISO/IEC 13818 (Parts 1 to 3).
[19] YRJ¨O NEUVO and WALTER H. KU, ”Analysis and Digital Realization of a Pseudorandom Gaussian and Impulsive Noise Source”, in IEEE transactions on communications, VOL. COM-23, NO. 9, SEP. 1975.
[20] J. E. Volder, ”The CORDIC trigonometric computing technique.”, IRE Trans. Electron. Comput. , vol. EC8, no.3, pp.330-334. Sept 1959.
[21] Yu Hen Hu, ”The Quantization Effects of the CORDIC Algorithm”, IEEE Transactions on Signal Processing, VOL. 40, NO. 4, APRIL 1992. 64
[22] Ray Andraka, ”A survey of CORDIC algorithms for FPGA based computers”.
[23] Jan-Jaap van de Beek, Magnus Sandell, Per Ola B¨orjesson, ”ML Estimation of Time and Frequency Offset in OFDM systems”, IEEE Transactions on signal processing,
VOL. 45, NO. 7, JULY 1997.
[24] Paul H. Moose, ”A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction”, IEEE Transaction on communications, VOL. 42, NO. 10, OCT 1994.
[25] Jai-Chin Lin, ”Maximum-Likelihood Frame Timing Instant and Frequency Offset Estimation for OFDM Communication Over a Fast Rayleigh-Fading Channel”, IEEE transactions on vehicular technology, VOL. 52, NO. 4, JULY 2003.
[26] Boaz Porat, ”A Course in Digital Signal Processing”, John Wiley & Sons, Inc 1997.
[27] Michael Speth, Stefan A. Fechtel, Gunnar Fock, and Heinrich Meyr, ”Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM-Part I”, IEEE Transactions on communications, VOL. 47, NO. 11, NOV 1999.
[28] Michael Speth, Stefan A. Fechtel, Gunnar Fock, and Heinrich Meyr, ”Optimum Receiver Design for OFDM-Based Broadband Transmission-Part II: A Case Study”, IEEE Transactions on communications, VOL. 49, NO. 4, April 2001.
[29] Thierry Pollet and Miguel Peeters, Alcatel, “Synchronization with DMT Modulation”, IEEE Communications Magazine April 1999.
[30] Thierry Pollet, Paul Spruyt and Marc Moeneclaey, “The BER Performance of OFDM Systems using Non-Synchronized Sampling”, IEEE 1994.
[31] Floyd M. Gardner, “Interpolation in Digital Modems – Part I : Fundamentals”, IEEE Transactions on communications VOL. 41, NO. 4, March 1993.
[32] Floyd M. Gardner, “Interpolation in Digital Modems – Part II : Implementation and Performance”, IEEE Transactions on communications VOL. 41, NO. 6, June 1993.
[33] Flavio Daffara and Ottavio Adami, ”A New Frequency Detector for Orthogonal Multicarrier Transmission Techniques”, Proc. of VTC, pp.804-809, 1995.
[34] Dong-Kyu Kim, Sang-Hyun Do, Hyun-Kyu Lee, and Hyung-Jin Choi, ”Performance of the Frequency Detectors for Orthogonal Frequency Division Multiplexing.”, IEEE Transactions on Consumer Electronics, Vol. 43, No. 3, Aug 1997. 65
[35] F. Classen and H Meyr, ”Frequency Synchronization Algorithm for OFDM Systems Suitable for Communication Over Frequency Selective Fading Channels.”, Proc. of VTC, pp. 1655-1659, 1994.
[36] Hiroshi Nogami and Toshio Nagashima, ”A Frequency and Timing Period Acquisition Technique for OFDM Systems.”, Proc. of PIMRC. pp. 1010-1015, 1995.
指導教授 薛木添(Muh-tian Shiue) 審核日期 2007-10-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明