博碩士論文 945201041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.188.229.120
姓名 李慶泰(Ching-tai Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 集極在上氮化鎵/氧化鋅異質接面雙極性電晶體
(GaN/ZnO collector-up Heterojunction Bipolar Transistors)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文前部分為概述濺鍍原理及氧化鋅薄膜製作流程,並利用霍爾量測、X光繞射量測分析氧化鋅層在不同的退火溫度下遷移率、濃度及電阻率等特性,提出以平臺式(Mesa-type)及重新成長法(Regrowth Method)的製程方法製作完成氧化鋅/氮化鎵二極體、氮化鎵/氧化鋅異質接面雙載子電晶體(GaN/ZnO Heterojunction Bipolar Transistors),且對電晶體進行直流量測、分析與討論,完成之元件製程均於國立中央大學光電科學研究中心完成。元件量測部份主要包括室溫直流特性、低溫直流特性;量測的射極面積主要為Ac= 150×150 um2,最後對量測結果進行討論和分析。
此電晶體在常溫無真空環境下VBE=2.4V時所得到電流增益約為11,崩潰電壓大於3伏特,且此電晶體在低溫200k、100k下所量測之電流增益分別約為620及1200,最後亦證明無蝕刻p-Type氮化鎵有較佳的金屬和半導體特性。
摘要(英) Several problems related with GaN-based bipolar transistors result in difficulties to fabricate GaN-based HBTs with good device characteristics. The major problems are the Schottky-like Ohmic contacts on p-GaN and the leakage paths from the threading dislocations (TDs) and dry etching process. Therefore, the research on GaN-based HBTs is still one of the challenging research subjects. The leakage current at the base-collector junction is the major source of the non-ideality in device characteristics. In order to reduce the threading dislocations from the GaN/sapphire interface and dry etching damage on p-GaN while fabricating a regular emitter-up HBT, a collector-up structure is used in this study. In this study we present a GaN/ZnO collector-up HBT with ZnO deposited by dc sputtering. The GaN based emitter and base structures are grown by MOCVD. Then n-ZnO film is deposited and lifted-off on top of the p-InGaN by dc sputtering with subsequent annealing at 600 degree for 60 seconds. The dependence of carrier concentration, electrical resistivity and Hall mobility of ZnO films on the annealing temperatures are studied. The as-deposited ZnO film does not show the Hall results due to the high resistivity. But lower resistivity is observed by increasing annealing temperatures. The x-ray scattering intensity profile of a 2θ-ω scan across the (002) reflection of the studied n-ZnO films is examined. It is shown that the diffraction angles of the annealed ZnO films remain the same as the GaN without shifting. After ZnO is lifted-off to define the collector region, base metallization is done by deposition of Ni/Au without dry etching. Finally, both emitter and collector contacts are completed with Cr/Au. The measured Gummel plot shows maximum current gain of ~11 with turn-on voltage of 2.25V (at 1uA). The measured common-emitter I-V characteristics demonstrate a working transistor with similar current gain. The Early voltage is low due to the low p-type doping in the base region. The off-set voltage (~1.2V) observed in the common-emitter I-V is mainly attributed to the different turn-on voltages between the base-emitter and base-collector junction diodes. The turn-on voltages (at 1uA) of the base-emitter and base-collector junction diodes are 2.4 and 1.25 V, respectively. The preliminary results of the fabricated GaN/ZnO HBT demonstrate the possibility of using wide band-gap ZnO on GaN to introduce more interesting research topics. In addition, the collector-up HBT structure could be an effective way to avoid the high threading dislocations in the base-collector junction of emitter-up HBT and thus improve the base-collector leakage problems.
關鍵字(中) ★ 濺鍍
★ 重新成長法
★ 氮化鎵
★ 異質接面雙極性電晶體
★ 氧化鋅
關鍵字(英) ★ GaN
★ sputter
★ ZnO
★ HBTs
★ Regrowth
論文目次 目錄 ..............................................I
圖目錄 ..............................................III
表目錄 ..............................................VI
第一章 導論........................1
1.1 研究動機....................1
1.2 GaN-based HBT介紹...........1
1.3 研究摘要....................4
第二章 直流式濺鍍氧化鋅薄膜之特性..5
2.1 濺鍍系統及原理..............5
2.2 氧化鋅薄膜製程與熱處理分析..6
2.2.1 濺鍍步驟....................7
2.2.2 薄膜熱處理製程..............8
2.2.3 氧化鋅薄膜特性..............8
第三章 氧化鋅/氮化鎵二極體特性量測與分
析.........................12
3.1 簡介........................12
3.2 氧化鋅/氮化鎵二極體製程流程.13
3.3 二極體特性量測..............21
3.4 二極體變溫量測..............25
第四章 氧化鋅/氮化鎵異質接面雙載子電晶
體量測與分析...............29
4.1 元件結構之特性..............29
4.2 電晶體元件製作流程..........30
4.3 電晶體特性量測..............38
4.3.1 常溫直流特性量測............39
4.3.2 低溫直流特性量測............44
第五章 結論........................54
參考文獻................................................55
參考文獻 [1] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett. 62, 1786 (1993).
[2] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High power microwave GaN-AlGaN HEMTs on silicon carbide,” IEEE Electron Device Lett. 20, 161 (1999).
[3] M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214 (1993).
[4] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN-GaN HEMTs,” IEEE Trans. Electron Devices 48, 586 (2001).
[5] Seikoh Yoshida and Joe Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys. 85, 7931 (1999).
[6] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett. 20, 277 (1999).
[7] L. S. McCarthy, I. P. Smorchkova, P. Fini, M. J. W. Rodwell, J. Speck, S. P. DenBaars and U. K. Mishra, “Small signal RF performance of AlGaN/GaN heterojunction bipolar transistor,” Electron Lett. 38, 144 (2002).
[8] L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543 (2001).
[9] L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN’GaN heterojunction bipolar transistors,” Appl. Phys. Lett. 78, 2235 (2001).
[10] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett. 76, 2457 (2000).
[11] X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144 (2000).
[12] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Graded-emitter AlGaN/GaN heterojunction bipolar transistors,” Electron. Lett. 36, 1239 (2000).
[13] Kuang-Po Hsueh “Studies of GaN-Based Heterojunction Bipolar Transistors” Paper. Department of Electrical Engineering National Central University ROC.
[14] P. Nunes, E.Fortunato and R. Martins, Thin Solid Films, Vol.383, p.277,2001
[15] C.H.YI,Itaru and Y. Shigesato,Jpn.J.Appl.Phys.1, Vol 34,p.1638, 1995.
[16] Ji-Myon Lee, Kyoung-Kook Kim, and Seong-Ju Park, Appl.Phys.Lett. Vol. 78, p.24 ,11 JUNE 2001
[17] H. SHENG,1 N.W. EMANETOGLU,1 S. MUTHUKUMAR,2 B.V. YAKSHINSKIY,3 S. FENG,1 and Y.LU1, J.Electron Mater, Vol.32, p.9, April 1 2003
[18] Z. Q. Chen, S. Yamamoto, M. Maekawa, and A. Kawasuso , X. L. Yuan and T. Sekiguchi J.Appl.Phys.Vol.94, p.8 ,15 OCTOBER 2003
[19] Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong, Appl.Phys.Lett. Vol.77,p.11 , 11 SEPTEMBER 2000
[20] Ji-Myon Lee, Kyoung-Kook Kim, and Seong-Ju Park, Appl.Phys.Lett. Vol. 78, p.24 ,11 JUNE 2001
[21] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, and B. K. Tay , X. H. Zhang , H. H. Hng J.Appl.Phys.Vol.94,p.1 ,1 JULY 2003
[22] B. A. Hull, S. E. Mohney, H. S. Venugopalan, and J. C. Ramer, Appl. Phys. Lett. 76, 2271 (2000).
[23] Yow-Jon Lin, Appl. Phys. Lett. 84, 2760 (2004).
[24] 施敏,Semiconductor devices physics and technology
[25] D. J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung, and M.Razeghi, Appl. Phys. Lett. 88, 141918 _2006_.
[26] Kuang-Po Hsueh, Shou-Chien Huang, Ching-Tai Li, and Yue-Ming Hsin, APPLIED PHYSICS LETTERS 90, 132111 _2007_
[27] J. S. Wright,a,z R. Khanna,a, L. Stafford,a B. P. Gila,a, D. P. Norton,a, S. J. Pearton,a, F. Ren,b, and I. I. Kravchenkoc “Ir/Au Ohmic Contacts on Bulk, Single-Crystal n-Type ZnO” ,Journal of the Electrochemical Society
[28] C.Y. Hua, , Z.B. Dingb, Z.X. Qina, Z.Z. Chena, K. Xua, Z.J. Yanga, B. Shena, S.D. Yaob, G.Y. Zhang“Ohmic contact mechanism of Ni/Au contact to p-type GaN studied by Rutherford backscattering spectrometry”, Journal of Crystal Growth
[29] 】C.Y. Hua, , Z.B. Dingb, Z.X. Qina, Z.Z. Chena, K. Xua, Y.J. Wanga, Z.J. Yanga, S.D. Yaob, B. Shena, G.Y. Zhan“Investigation on the different barrier effect of Ni and Pt in the Ti/Al/Pt/Au and Ti/Al/Ni/Au contacts to n-type GaN”, Journal of Crystal Growth
[30] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315 (1997).
[31] J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys Lett. 74, 2289 (1999).
[32] C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy and R. J. Shul, “ICl/Ar electron cyclotron resonance plasma etching of III-V nitrides,” Appl. Phys Lett. 69, 1426 (1996).
[33] Donghun Kang, Hyuck Lim, Changjung Kim, Ihun Song, Jaechoel Park, and Youngsoo Park“Amorphous gallium indium zinc oxide thin film transistors:Sensitive to oxygen molecules” Appl. Phys. Lett.90, 92101(2007)
[34] J. J. Huang, Student Member, IEEE, Michael Hattendorf, Milton Feng, Fellow, IEEE, D. J. H.Lambert B. S. Shelton, Student Member, “Temperature Dependent Common Emitter Current Gain and Collector –Emitter Offset Voltage Study in AlGaN/GaN Heterojunction Bipolar Transistors” IEEE ELECTRON DEVICE LETTERS,VOL.22,NO.4,APRIL 2001
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2007-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明