博碩士論文 945201057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.117.183.150
姓名 徐偉峰(Wei-Feng Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵高電子遷移率功率電晶體應用於切換式直流對直流升壓轉換器之研究
(AlGaN/GaN HEMT Applied to Switching DC to DC Boost Converter Analysis)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,能源問題越來越被人們所重視,因此在功率上的要求與日俱增。氮化鎵材料由於先天的材料優勢及特性,如:高抗熱、高崩潰電壓、高電子飽和速度、優秀的壓電效應以及高電流密度,使得在未來高速、高功率的應用上成為極佳的選擇,尤其適合像是在汽車電子高溫高功率的環境。本論文將實現能高速、高電壓操作之氮化鎵高電子遷移率功率電晶體,並整合蕭特基二極體,應用於直流對直流升壓轉換器;同時利用與『砷化鎵假晶格高電子遷移率電晶體、矽材料功率金氧半場效電晶體』互相比較,顯現出氮化鎵能同時實現高速、高電壓操作的獨特優勢。
第二章將先利用ADS模擬軟體模擬、分析升壓電路,了解其對元件的需求;並且在此章完成砷化鎵高速、低電壓操作,與矽材料低速、高電壓操作之直流對直流升壓電路。第三章則簡單介紹氮化鎵高電子遷移率電晶體之原理;並在此章說明元件設計的佈局與詳細製作流程。第四章針對第三章完成的電晶體與二極體,先量測其直流與高頻、功率特性;並實現高速(1 MHz)、高電壓(30 V)『氮化鎵高電子遷移率功率電晶體整合蕭特基二極體直流對直流升壓電路』。第五章最後將對本論文結果做一歸納總結,並且探討未來改善與研究方向。
摘要(英) In recent years, energy problem has been taken seriously day by day. Therefore, the power semiconductor device is showing increasing important in power electronics. To break through the material limits of silicon to realize the drastic performance improvement, GaN have at-tracted much attention. GaN has several special properties: fine thermal stability, high breakdown voltage, high electron velocity, and high current density, and so on. GaN could be applied for high frequency and high voltage operation at high temperature environment, especially such as future automobile application. In my thesis, I would realize GaN HEMT integrated schottky diode and apply it to high frequency and high voltage operation dc to dc converter. I also compare Si power MOSFET and GaAs pHEMT with GaN in applying dc to dc converter and recognize the advantage of GaN for power electronics.
In chap2, I would set up simulation platform with “Aglient Ad-vanced Design System 2005”, and analyze dc to dc converter to check what demands for device. I also establish measurement system for dc to dc converter in this chapter, and use GaAs pHEMT and Si power MOS-FET to compose dc to dc converter. In chap3, I utilize the experience in previous to design GaN power device and schottky diode. Besides, the process fabrication flow is shown in this chapter, too. The dc and rf per-formance are measured in chap4. High frequency (1 MHz) and high voltage (30 V) GaN dc to dc converter is realized and analyzed. Finally, I would drop some conclusions and future work.
關鍵字(中) ★ 氮化鎵
★ 高電子遷移率電晶體
★ 直流對直流轉換器
關鍵字(英) ★ DC to DC Converter
★ GaN
★ HEMT
論文目次 第一章 緒論 1
1.1 氮化鎵研究背景與簡介 1
1.2 氮化鎵功率應用與直流對直流轉換器 5
1.3 論文架構與摘要 9
第二章 切換式直流對直流升壓轉換器模擬與量測 10
2-1 簡介 10
2-2 切換式直流對直流升壓轉換器原理 10
2-2.1 CCM升壓電路理想無損耗理論分析 11
2-2.1 CCM升壓電路非理想損耗分析 16
2-3 GaAs pHEMT直流對直流升壓電路模擬 19
2-3.1 模擬平臺建立 19
2-3.2 5V/10V 1 MHz GaAs 升壓電路模擬結果 22
2-3.2 元件面積與升壓電路分析 25
2-4 GaAs pHEMT與Power MOSFET直流量測 28
2-4 直流對直流升壓轉換電路量測系統 31
2-5 GaAs pHEMT與Power MOSFET直流對直流升壓轉換電路量測結果 33
2-5.1 Vd=5 V不同頻率轉換效率比較 33
2-5.2 Vd=20 V 100 kHz Power MOSFET 升壓電路 38
2-6 本章總結 41
第三章 AlGaN/GaN HEMT整合二極體製程 42
3-1 AlGaN/GaN HEMT 簡介 42
3-1.1 氮化鎵材料特性簡介 42
3-1.1 AlGaN/GaN HEMT操作原理 45
3-2 AlGaN/GaN HEMT設計 49
3-3 AlGaN/GaN HEMT與蕭特基二極體設計 51
3-4 AlGaN/GaN HEMT整合二極體製程 52
3-4.1 Mesa Isolation 52
3-4.2 Ohmic Contact 53
3-4.3 Schottky Contact 55
3-4.4 Si3N4 Via Hole Etching Field Plate Deposition 56
3-4.5 Field Plate Deposition 56
3-4.6 Electrode Fabrication 1(Metal 1) 57
3-4.7 BCB Pier Process 57
3-4.8 Metal Bridge & Metal 2 58
第四章 實現氮化鎵直流對直流升壓轉換器 62
4-1 元件直流特性量測結果 62
4-1.1 AlGaN/GaN HEMT 直流特性量測結果 62
4-1.2 蕭特基二極體直流特性量測結果 65
4-2 AlGaN/GaN HEMT高頻特性量測結果 67
4-3 實現1 MHz 15V/30V 氮化鎵直流對直流升壓轉換電路 69
4-4 本章總結 74
第五章 結論 76
參考文獻 78
參考文獻 [1] B.J. Baliga, “Trends in power semiconductor devices”, IEEE Trans. Electron De-vice, Vol. 43, pp. 1717-1713, 1996.
[2] B.J. Baliga, “Power semiconductor device figure of merit for high-frequency ap-plications”, IEEE Electron Device Letters, Vol. 10, pp. 455-57, 1989
[3] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN based light emitting diodes operable at high ambient temperature”, J. Appl. Phys., Vol. 37, pp.479-481, 1998.
[4] S. Nakamura, T. Mukai, and M. Senoh, “High power GaN P-N junction blue light emitting diodes”, J. Appl. Phys., Vol. 30, pp.1998, 1991.
[5] T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW Kink-Free Blue-Violet Laser Diodes With Low Aspect Ratio”, IEEE Journal of Quantum Electronics, Vol. 39, pp. 135-140, 2003.
[6] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/AlN/GaN High-Power Microwave HEMT”, IEEE Electron Device Letters, Vol. 22, pp. 457-459, 2001.
[7] E. M. Chumbes, J. A. Smart, T. Prunty, J. R. Shealy, “Microwave performance of AlGaN/GaN metal insulator semiconductor field effect transistors on sapphire substrates”, IEEE Trans. Electron Device, Vol. 48, pp. 416-419, 2001.
[8] T. P. Chow, “SiC and GaN high-voltage power switching devices”, Materials Sci-ence Forum, Vol. 338-342, pp. 1155-1160, 2000.
[9] Y. F. Wu, B. P. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN het-erojunction field effect transistors”, Appl. Phys. Lett., Vol. 69, pp. 1438-1440, 1996.
[10] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. I. Chyi, C.M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, “High Voltage GaN Schottky rectifiers”, IEEE Trans. Electron Device, Vol. 47, pp. 692-696, 2000.
[11] Bausiere, R. Labrique, F. Seguier, “Power Electonic Converters”, Springer-Verlag, pp. 1, 1993.
[12] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans, Electron Device, Vol. 41, 1481-1483, 1994.
[13] M. Trivedi and K. Shenai, “Performance evaluation of high-power wide bandgap semiconductor rectifiers”, J. Appl, Phys., Vol. 85, pp. 6889-6897, 1999.
[14] Wataru Saito, Masahiko Kuraguchi, Yoshihra Takada, Ichiro Omura, Tsuneo Oguro “High Breakdown Voltage Undoped AlGaN-GaN Power HEMT on Sap-phire Subtrate and Its Demonstration for DC-DC Converter Application”, IEEE Trans. Electron Device, Vol. 51, No. 11, 2004.
[15] H.Ueda etc., “Wide-Bandgap Semiconductor Devices for Automobile Applica-tions”, CS MANTECH Conference, 2006.
[16] Masayasu Ishiko, “Recent R&D Activities of Power Devices for Hybrid Electric Vehicles”, R&D review of TOYOTA CRDL Vol.39 No.4
[17] Robert J. Campbell etc., “Evaluation of power devices for automotive hybrid and 42V based systems”SAE world congress, 2004.
[18] 機械專網 “汽車新型電源系統” Web site : http://mashine.2456.com/trad/main.asp
[19] 梁適安., “交換式電源供給器之理論與實務設計” ,全華科技圖書股份有限公司, 2004年10月.
[20] 鄭振東., “轉換式電源穩定器設計要訣” ,建興出版社, 2003年4月.
[21] S. Ajram, R. Kozlowski, J.C. Van de Velde and G. Salmer, “Application of GaAs Power Devices to Very-High-Frequency and High-Efficiency DC to DC Power converters” GAAS'96 Conference, 1996.
[22] Sami Ajram and Georges Salmer,. “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches”, IEEE Trans, Electron Device, Vol. 16, NO. 5, 2001.
[23] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. D. Brown, S. Singhal, and K. J. Linthicum, “12 W/mm AlGaN–GaN HFETs on Silicon Substrates”, IEEE Electron Device Letters, Vol. 25, pp. 459-461, 2004.
[24] A. Minko, V. Ho
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2007-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明