博碩士論文 945201059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.208.187.128
姓名 張銘軒(Ming-hsuan Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 單電子電晶體之元件特性模擬
(Simulation of transport properties of Single Electron Transistors)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 半導體量子點之穿隧電流
★ 有機非揮發性記憶體之量測與分析★ 鍺奈米線與矽奈米線電晶體之研製
★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用★ 以微控制器為基礎的智慧型跑步機系統研製
★ 單電子電晶體耦合量子點的負微分電導效應★ 單電子電晶體的熱電效應
★ 多量子點系統之熱電效應★ 多量子點系統之熱整流效應
★ 單電子電晶體在有限溫度下的模擬★ 分子電晶體之穿隧電流與熱電效應
★ 串接耦合量子點之熱電特性★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 半導體製程技術不斷突破,挑戰元件尺寸微縮的極限;而先進的量子點成長技
術,更使得研究人員在室溫下就能觀察到單電子電晶體的主要元件特性-庫論阻斷效
應。
本文利用非平衡態的格林函數,系統化探討一系列單電子電晶體之穿隧電流頻譜
表現,以利於實驗量測上定性判別譜線成因和解釋現象;其中在單一能階系統中,格
林函數已能反應出電子內階庫倫交互作用,引起電流呈現庫倫階梯及庫倫震盪形式;
在二能階以上的系統,格林函數亦能涵蓋外階庫倫交互作用,描述更複雜的穿隧電流
頻譜;在非對稱穿隧率的系統當中,「殼層穿隧」與「殼層填充」兩種不同的限制條
件下,在頻譜上會選擇性增強或消除量子點裸能階之共振通道訊息;溫度影響電極電
子之費米分佈,使高溫下載子填充較為緩和;此外,將金屬電極更換成重參雜之半導
體電極,由於半導體電極本身載子有效帶寬比電極薄,當有一側電極之能隙對齊到已
開啟之共振通道,則該通道之電流將會立即被關閉。
摘要(英) The main purpose of this dissertation is to theoretically study the transport properties
of single-electron transistors (SETs) based on the formalism derived by authors David M. T.
Kuo and Y. C. Chang [arXiv:con-mat/0702095v1 (2007)]. The Coulomb staircase and
Coulomb oscillation of tunneling current can be easily clarified in a nanostructure junction
of one-level system. We also study the tunneling current of SETs in the shell-tunneling and
shell-filling cases. Apart from that, temperature effect on the tunneling current through
multi energy levels is investigated. We found that the tunneling current feature of Coulomb
staircase and Coulomb oscillation with respect to the source-drain voltage difference can be
simultaneously observed in a nanojunction system with semiconductor electrodes due to
asymmetrical carrier density available in the S/D electrodes.
關鍵字(中) ★ 單電子電晶體
★ 庫倫阻斷
★ 穿隧電流
★ 格林函數
關鍵字(英) ★ tunneling current
★ green's function
★ single electron transistors
★ coulomb blockade
論文目次 摘要..……………………………………..…………………I
Abstract..………………………………..…………………II
誌謝..…………………………………..…………………III
目錄………………………………………………………..IV
圖目錄……………………………………………………..VI
表目錄..…………………………………………………VIII
第一章 導論………………………………………………..1
第二章 穿隧電流…………………………………………..3
2-1 系統模型…………………………………………………………………………..3
2-1-1 單一能階系統格林函數…………………………………………………...5
2-1-2 二能階系統格林函數………………………………………………..……6
2-1-3 偏壓對量子點裸能階修正………………………………………………...7
2-2 單一能階系統……………………………………………………………………..8
2-2-1 調控單一能階系統偏壓…………………………………..………………8
2-2-2 調控單一能階系統閘極電位…………………………………………….10
2-3 二能階系統………………………………………………………………………12
2-3-1 調控二能階系統偏壓…………………………………………………….12
2-3-2 調控二能階系統閘極電位……………………………………………….14
2-4 非對稱穿隧率……………………………………………………………………17
2-4-1 殼層填充………………………………………………………………….17
2-4-2 殼層穿隧………………………………………………………………….21
第三章 多能階系統………………………………………24
3-1 多重能階格林函數………………………………………………………………24
V
3-2 三能階系統………………………………………………………………………27
3-2-1 調控三能階系統偏壓…………………………………………………….27
3-2-2 調控三能階系統閘極電位……………………………………………….29
3-2-3 非對稱穿隧率下之微分電導…………………………………………….31
3-3 雙量子點系統……………………………………………………………………32
第四章 電極之影響………………………………………36
4-1 參雜半導體………………………………………………………………………36
4-2 計算參雜半導體之費米能階……………………………………………………39
4-2-1 供體重參雜之費米能階………………………………………………….39
4-2-2 受體重參雜之費米能階………………………………………………….41
4-3 薄傳導帶電極之影響……………………………………………………………43
4-3-1 低溫下薄傳導帶電極之影響…………………………….………………43
4-3-2 高溫下薄傳導帶電極之影響…………………………………………….45
第五章 結論………………………………………………47
參考文獻…………………………………………………..48
參考文獻 [1.1] M. A. Kastner, “The single-electron transistor”, Rev. Mod. Phys. 64, 849 (1992)
[1.2] M. A. Kastner, “The single electron transistor and artificial atoms”, Ann. Phys. 9, 885
(2000)
[1.3] D. V. Averin and K. K. Likharev, “Coulomb blockade of single-electron tunneling, and
coherent oscillations in small tunnel junctions”, Low Temp. Phys. 62, 345 (1986)
[1.4] T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small
tunnel junctions”, Phys. Rev. Lett. 59, 109 (1987)
[1.5] J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis,
“Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas”,
Phys. Rev. Lett. 62, 583 (1989).
[2.1] David M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current
through a single quantum dot”, Physica E, 27, 355 (2005).
[2.2] Y. Meir, N.S. Wingreen and P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)
[2.3] L.V. Keldysh: Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov.Phys. JETP 20 (1965) 1018].
[2.4] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a
uniform electric field”, Phys. Rev. B, 61, 11051 (2000)
[2.5] Sophia J. Sun and Yia-Chung Chang, “Modeling self-assembled quantum dots by the
effective bond-orbital method”, Phys. Rev. B, 62, 13631 (2000)
[3.1] David M.T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure
junction involving multiple energy”, Phys. Rev. Lett. (2007 Accepted)
[arXiv:con-mat/0702095v1]
[4.1] Robert F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley, 1996
[4.2] H. D. Barber, “Effective mass and intrinsic concentration in silicon”, Solid-state
- 49 -
Electronics, 10, 1039 (1967)
[4.3] G. L. Pearson and J. Bardeen, “Electrical Properties of Pure Silicon and Silicon Alloys
Containing Boron and Phosphorus”, Phys. Rev. 75, 865 (1949)
指導教授 郭明庭(Ming-ting Kuo) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明