博碩士論文 945201063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.208.187.128
姓名 王嘉豪(Jia-hao Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 單電子電晶體耦合量子點的負微分電導效應
(Negative differential conductance effect of the parallel coupled Quantum Dots)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體的熱電效應
★ 多量子點系統之熱電效應★ 多量子點系統之熱整流效應
★ 單電子電晶體在有限溫度下的模擬★ 分子電晶體之穿隧電流與熱電效應
★ 串接耦合量子點之熱電特性★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是利用格林函數,系統化的探討單電子電晶體的穿隧電流頻譜。首先在一階系統裡,分析了內階庫倫交互作用力所造成的影響;由於庫倫阻斷效應,使穿隧電流呈現出庫倫階梯以及庫倫震盪的現象。我們還分析了穿隧率改變對電流頻譜所造成的影響,穿隧率的改變會影響電流頻譜上各個通道的強弱。在二階系統裡,由於能階之間會互相影響,所以加入了外階庫倫交互作用力這項參數;二階系統的電流頻譜,會受到內階庫倫交互作用力與外階庫倫作用力的共同作用。在經過一連串的分析之後,我們整理出了影響能階裡各個通道強弱的因素。而最後探討了在雙量子點系統裡,負微分電導的成因,發現到負微分電導的產生,和量子點左右穿隧率的比例息息相關,只有當量子點B為殼層填充時,才觀察的到負微分電導。
摘要(英) Tunneling current of single-electron transistor is systematically investigated by using the Keldysh Green function method in this thesis. For one energy level case, the Coulomb staircase and Coulomb oscillation of tunneling current with respect to the applied bias and gate voltage arise from intralevel electron Coulomb interaction. We also found that tunneling rate ratio significantly influences the tunneling current spectrum. For two energy level case, the interlevel Coulomb interactions as well as intralevel Coulomb interactions exist remarkable effect on the tunneling current. Finally, we study the tunneling current through paralleled two quantum dot system. The tunneling current shows the negative differential conductance (NDC) behavior resulting from the interdot Coulomb interactions. Such a NDC effect exists in the quantum dot with shell-filling condition.
關鍵字(中) ★ 單電子電晶體
★ 穿隧電流
關鍵字(英) ★ single electron transistors
★ tunneling current
論文目次 摘要.................................................. I
Abstract..............................................II
致謝.................................................III
目錄..................................................IV
圖目錄................................................VI
表目錄..............................................VIII
第一章 導論……………………………………………..………….1
第二章 穿隧電流……………………………………………..…….3
  2-1 系統模型.........................................................3
  2-2 推遲格林函數的一般式.............................................6
  2-3 偏壓對量子點裸能階的修正.........................................8
第三章 一階系統.......................................9
  3-1 一階系統格林函數.................................................9
  3-2 一階系統的電子佔據率與穿隧電流..................................10
     3-2-1 調控一階系統偏壓.........................................10
     3-2-2 調控一階系統閘極電位.....................................14
  3-3 非對稱穿隧率....................................................17
     3-3-1 殼層填充.................................................17
     3-3-2 殼層穿隧.................................................21
第四章 二階系統……………………………………………….…24
  4-1 二階系統格林函數................................................24
  4-2 二階系統的電子佔據率與穿隧電流..................................26
     4-2-1 調控二階系統偏壓.........................................26
     4-2-2 調控二階系統閘極電位.....................................28
  4-3 非對稱穿隧率對二階系統的影響....................................30
     4-3-1 殼層填充對二階系統之影響.................................30
     4-3-2 殼層穿隧對二階系統之影響.................................34
  4-4 溫度對二階系統偏壓的影響........................................38
第五章 負微分電導....................................40
第六章 結論..........................................46
參考文獻..............................................47
參考文獻 [1.1] M. A. Kastner, “The single-electron transistor”, Rev. Mod. Phys. 64, 849 (1992)
[1.2] M. A. Kastner, “The single electron transistor and artificial atoms”, Ann. Phys. 9, 885(2000)
[1.3] D. V. Averin and K. K. Likharev, “Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions”, Low Temp. Phys. 62, 345 (1986)
[1.4] T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions”, Phys. Rev. Lett. 59, 109 (1987)
[1.5] J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A.
Antoniadis, “Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas”, Phys. Rev. Lett. 62, 583 (1989).
[2.1] David M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
[2.2] Y. Meir, N.S. Wingreen and P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)
[2.3] L.V. Keldysh: Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov.Phys. JETP 20 (1965) 1018].
[2.4] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000)
[2.5] David M.T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. (2007)
[2.6] 張銘軒,「單電子電晶體之元件特性模擬」,碩士論文,國立中央大學電機工程研究所,中壢 (2007)。
[3.1] Sophia J. Sun and Yia-Chung Chang, “Modeling self-assembled quantum dots by the effective bond-orbital method”, Phys. Rev. B, 62, 13631 (2000)
[3.2] David M.T. Kuo and P. W. Li, “Effect of Interdot Coulomb Repulsion on Charge Transport of Parallel Two Single-Electron Transistors”,JJAP (2006)
[3.3] Yukinori Ono and Yasuo Takahashi, “Observation and Circuit Application of Negative Differential Conductance in Silicon Single-Electron Transistors” (2002)
指導教授 郭明庭(Ming-ting Kuo) 審核日期 2008-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明