博碩士論文 945201074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:35.175.201.14
姓名 王嘉麒(Chia-Chi Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用有限元素法建構3維的舌頭力學模型
(Development of a 3D Mechanical Tongue Model with Finite Element Method)
相關論文
★ 獨立成份分析法於真實環境中聲音訊號分離之探討★ 口腔核磁共振影像的分割與三維灰階值內插
★ 數位式氣喘尖峰氣流量監測系統設計★ 結合人工電子耳與助聽器對中文語音辨識率的影響
★ 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析★ 中文發聲之神經關聯性的腦功能磁振造影研究
★ 以磁振造影為基礎的立體舌頭圖譜之建構★ 腎小管之草酸鈣濃度變化與草酸鈣結石關係之模擬研究
★ 口腔磁振影像舌頭構造之自動分割★ 微波輸出窗電性匹配之研究
★ 以軟體為基準的助聽器模擬平台之發展-噪音消除★ 以軟體為基準的助聽器模擬平台之發展-回饋音消除
★ 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響★ 用類神經網路研究中文語音聲調產生之神經關聯性
★ 教學用電腦模擬生理系統之建構★ 以軟體為基準的助聽器模擬平台之發展-方向性麥克風
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的目的在利用舌頭磁振造影所重建之影像,建構出三維的舌頭有限元素力學模型。我們使用Gerard在文獻中所用的人的舌頭材料特性-二階和五階的Mooney-Rivlin 超彈性應變能量函數,且假設舌頭為不可壓縮體,來做為我們舌頭的材料特性,並以舌頭磁振造影的影像為基礎,利用ANSYS®有限元素軟體建構舌頭的模型。這舌頭模型包含發聲時主要使用到的7種肌肉,即莖突舌肌、舌骨舌肌、頦舌肌(又分成了前、中、後3個部份)、舌上縱肌、舌下縱肌、舌橫肌和舌直肌。在建構出舌頭的有限元素模型後,我們接著對舌頭模型各部份的肌肉施力,進行動態的模擬,施力的方向為沿著各個肌肉纖維的走向,由結果中可以觀察到此舌頭模型各部份的肌肉收縮時皆能達到該肌肉收縮對舌頭產生應有的變形。最後我們參考文獻的資料,進行母音[u]、[a]、[i] 及子音 [t]、[k]等舌頭發音動作的模擬,而由舌頭施力變形後的結果也觀察到發音模擬的部份,其結果也都合乎了發這些音時舌頭動作的特徵。由以上這些初步結果顯示我們所建構的三維舌頭有限元素力學模型可以做為未來更多構音動作模擬的一個雛形。
摘要(英) The aim of this study is to develop a 3D finite element mechanical tongue model based on the reconstructed MR images of the human tongue. In this study, we used the second and fifth order Mooney-Rivlin hyperelastic strain-energy function that Gerard had used in his paper as the constitutive equation of our tongue model, and assumed that the tongue is incompressible. Based on the reconstructed MR images of the human tongue, we built the tongue model with ANSYS® finite element software. Our tongue model includes seven principle muscles that are involved in the human speech production. They are the Styloglossus muscles, the Hyoglossus muscles, the Genioglossus muscles (also divided into the anterior, middle and posterior three parts.), the Superior longitudinalis muscles, the Inferior longitudinalis muscles, the Transversus muscles and the Verticalis muscles. Once the tongue model was developed, dynamic simulation proceeded on each muscle of the tongue model with the force direction followed the muscle fiber direction. From the results, we could observe that contraction of each muscle in this tongue model had caused correct corresponding deformation on the tongue model, respectively. Finally, we simulated articulatory movements of vowels [u], [a], [i] and consonants [t], [k] with our tongue model. From the results, we also could see that the articulatory movements of our tongue model had conformed to the features of these phonetic articulations. These preliminary results show that our 3D finite element mechanical tongue model could be used as a basis for more phonetic articulatory simulation in the future.
關鍵字(中) ★ 磁振造影
★ 有限元素法
★ 舌外肌
★ 舌內肌
關鍵字(英) ★ intrinsic muscles
★ extrinsic muscles
★ MR image
★ Finite element method
論文目次 頁次
目錄 . I
圖目錄 IV
表目錄 VIII
第一章 序論 1
1.1 研究動機 1
1.2 舌頭主要構音肌肉群 2
1.2.1 簡介 2
1.2.2 舌內肌 3
1.2.3 舌外肌 5
1.3 文獻回顧 7
1.3.1 2D模型 7
1.3.2 3D模型 9
1.4 論文架構 20
第二章 有限元素法原理 21
2.1 簡介 21
2.2 有限元素法分析的步驟 23
2.3 元素剛度矩陣的導出方法 26
2.4有限元素法的分類 30
2.5 非線性分析 30
2.5.1 增量疊代分析 31
2.5.2 Newton-Raphson法 32
2.5.3 弧長法 34
第三章 材料與方法 35
3.1 ANSYS®有限元素軟體 35
3.2 實驗設計 36
3.3 材料性質 37
3.4 建立3D舌頭有限元素模型 40
3.4.1 元素種類 40
3.4.2 建立舌頭模型 41
3.4.3 邊界條件的限制 56
3.4.4 施力之方法 57
3.5 發音的模擬 63
第四章 實驗結果與討論 65
4.1 舌頭施力之結果 65
4.1.1 各肌肉施力之結果 65
4.1.2 發音之模擬結果 75
4.2 結果討論 79
第五章 結論與未來展望 88 5.1 結論 88
5.2 未來展望 88
參考文獻 90
參考文獻 Alfonso, P.E., Honda, K., Baer, T., Harris, K.S. (1982). “Multichannel study of tongue EMG during vowel production,” J. Acoust. Soc. Am. 71, S54(A).
Bagshaw, C.R. (1993). Muscle Contraction (Chapman & Hatl, London), 2nd ed.
Dang, J., Honda, K. (2004).“Construction and control of a physiological articulatory model,”J. Acoust. Soc. Am. 115(2), 853-870.
Davis, E., Douglas, A., Stone, M. (1996).“A continuum mechanics representation of tongue motion in speech,”Proceedings of ICSLP1996, 788-792.
Engwall, O. (1999).“Vocal tract modeling in 3D,”TMH-QPSR 1-2, 31-38.
Engwall, O. (2001).“Synthesizing static vowels and dynamic sounds using a 3D vocal tract model,”In: Proceedings of 4th ISCA Tutorial and research workshop on Speech synthesis.
Feldman, A.G., Orlovsky, G.N. (1972).“The influence of different descending systems on the tonic stretch reflex in the cat,” Experimental Neurology 37, 48l-494.
Gerard, J.M., Wilhelms-Tricarico, R., Perrier, P., Payan Y. (2003).“A 3D dynamical biomechanical tongue model to study speech motor control.”Recent Research Developments in Biomechanics, Vol.1, 49-64
Gerard, J.M., Ohayon, J., Luboz, V., Perrier, P., Payan, Y. (2005).“Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique Application to the biomechanics of speech production,”Medical Engineering & Physics, 27, 884-892.
Hashimoto, K., Matsushita, Y., Suga, S. (1982).“Simulation of the articulatory behavior of the tongue,”IEEE, 42-48.
Hashimoto, K., Suga, S. (1986).“Estimation of the muscular tensions of the human tongue by using a three-dimensional model of the tongue,”J. Acoust. Soc. Jpn.(E) 7(1), 39-46.
Kakita, Y., Fujimura, O. (1977).“A computational model of the tongue: A Revised Version,”J. Acoust. Soc. Am. 62, S15(A).
Kakita, Y., Fujimura, O., Honda, K. (1985).“Computation of mapping from muscular contraction patterns to formant patterns in vowel space,”in Phonetic Linguistics, edited by V. A. Fromkin, 133-144.
Kiritani, S., Miyawaki, K., Fujimura, O., Miller, J.E. (1976).“A computational model of the tongue,”Ann. Bull. RILP, 10, 243-251.
McCully, K.K., Faulkner, J.A. (1983).“Length-tension relationship of mammalian diaphragm muscles,”J. Appl. Physiol. 54, 1681-1686.
Mermelstein, P. (1973).“Articulatory model for the study of speech production,”J. Acoust. Soc. Am. 53, 1070-1082.
Miyawaki, K. (1974).“A study of the musculature of the human tongue: Observations on transparent preparations of serial sections,”Ann. Bull. Res. Inst. Logoper. Phoniatrics Univ. Tokyo, 8, 23-50.
Napadow, V.J., Chen, Q., Wedeen, V.J., Gilbert, R.J. (1999). “Intramural mechanics of the human tongue in association with physiological deformations,”Journal of Biomechanics, 32, 1-12.
Napadow, V.J., Chen, Q., Wedeen, V.J., Gilbert, R.J. (1999). “Biomechanical basis for lingual muscular deformation during swallowing,”American Physiological Society, 277, G695-G701.
Napadow, V.J., Kamm, R.D., Gilbert, R.J. (2002).“A Biomechanical Model of Sagittal Tongue Bending,”Journal of Biomechanical Engineering, 124, 547-556.
Payan, Y., Perrier, P. (1997).“Synthesis of V-V sequences with a 2D biomechanical tongue model controlled by the Equilibrium Point Hypothesis,”Speech Communication, 22, 185-205.
Sanguineti, V., Laboissie`re, R., Ostry D.J. (1998).“A dynamic biomechanical model for neural control of speech production,”J. Acoust. Soc. Am. 103(3), 1615-1627.
Stone, M., Davis, E., Douglas, A., Ness Aiver, M., Gullapalli, R., Levine, W., Lundberg, A. (2001).“Modeling motion of the internal tongue from tagged cine-MRI images,”J. Acoust. Soc. Am. 109, 2974-2982.
Vogt, F., Lloyd, J.E., Buchaillard, S., Perrier, P., Chabanas, M., Payan, Y., Fels, S.S. (2006).“An Efficient Biomechanical Tongue Model for Speech Research.” Proceedings of ISSP06, 51-58.
Wilhelms-Tricarico, R. (1995).“Physiological modeling of speech production: Methods for modeling soft-tissue articulators,” J. Acoust. Soc. Am. 97(5), 3085-3098.
Wu, C.M. (1996).“Computational methods for integrating different anatomical data sets of the human tongue,” PHD thesis, The Ohio State University, Columbus, OH
王勗成、邵敏(民79)。有限元素法:基本原理與數值方法(亞東,台北)。
王新榮、陳時錦、劉亞忠(民86)。有限元素法及其應用(中央圖書,台北)。
指導教授 吳炤民(Chao-Min Wu) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明