博碩士論文 945201089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.223.210.20
姓名 朱柏光(Bo-Guang Jhu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 可偵測間距與負載之單級高功因非接觸供電系統
(Single-Stage Non-Contact Power System Having High Power Factor With Gap and Load Detection)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要為研製一可偵測間距與負載之單級高功因非接觸供電系統,將升壓式轉換器操作在不連續導通模式,達到自發性功因校正之功能。結合半橋串聯諧振式轉換器,將開關切換頻率操作在諧振頻率之上,達到零電壓切換,減少開關切換損失。此外,提出間距與負載偵測機制,利用電磁耦合的原理,設計一個可同時傳輸能量與訊號之非接觸供電系統,將訊號迴授至一次側微控制器。實驗證實,在不同間距與負載,間距訊號線圈和鐵心間距有關,負載訊號線圈和輸出負載有關,利用一次側變頻方式控制二次側輸出電壓穩定,系統之功因可達到0.986以上並且符合IEC 1000-3-2 Class-D之諧波規範。本文所提之可偵測間距與負載之單級高功因非接觸供電系統具有架構簡單、低成本、高功因與低諧波干擾等優點。
摘要(英) In this thesis, a single-stage non-contact power system having high power factor with gap and load detection is porposed. The boost converter is operated in discontinuous conduction mode (DCM) for achieving power factor correction(PFC). In order to achieve zero-voltage switching and reduce the switching loss, with half-bridge series resonant converter, the switching frequency is designed to be higher than the resonant frequency. Furthermore, this study proposed the gap and load detection mechanisms, based on electromagnetic theory. The designed non-contact power system, is able to transfer energy and signal simultaneously. Under variation of gap and load, experimental results verify that the signal of gap detection core is related to the gap and the signal of load detection core is related to the output, by varing the primary switchting frequency to controll the output voltage . The proposed system successfully meets IEC 1000-3-2 Class-D requirements and power factor can be achieved up to 0.986. The proposed single-stage non-contact power system having high power factor with gap and load detection has the advantages of simple structure, low component count, high power factor and low harmonic.
關鍵字(中) ★ 單級
★ 非接觸供電系統
★ 半橋串聯諧振式轉換器
★ 間距偵測
★ 負載偵測
★ 變頻
關鍵字(英) ★ half-bridge series resonant converter
★ gap detection
★ single-stage
★ non-contact power system
★ load detection
★ varying frequency
論文目次 第一章 緒論 01
1.1研究動機 01
1.2研究背景 01
1.3研究目的與方法 02
1.4論文大綱 04
第二章 非接觸式供電技術 05
2.1非接觸式與接觸式供電技術之差異 05
2.2非接觸式供電技術之發展 07
2.2.1非接觸式電路拓樸 07
2.2.2非接觸式鐵心形狀 09
2.2.3非接觸式控制方法 11
2.2.4非接觸式應用領域 12
2.3技術開發與設計考量 15
第三章 主動式功率因數校正技術 18
3.1功率因數定義 18
3.2主動式功率因數校正電路之控制方法 21
3.2.1磁滯電流控制(Hysteresis Current Control) 23
3.2.2峰值電流控制(Peak Current Control) 24
3.2.3平均電流控制(Average Current Control) 25
3.2.4電壓隨耦控制(Voltage Follower Control) 26
3.3升壓式電源轉換器之功率因數校正分析 27
3.3.1電路工作原理 27
3.3.2升壓式電源轉換器功因校正之驗證 29
第四章 非接觸式供電系統負載與間距之偵測 33
4.1變壓器磁路模型之建立 33
4.1.1雙埠網路法 33
4.1.2變壓器磁路模型之分析 37
4.1.3型鐵心不同繞製方式之等效磁路模型[43] 39
4.2非接觸式變壓器繞製 41
4.3間距與負載之偵測 42
4.4等效磁路模擬 46
第五章 可偵測間距與負載之單級高功因非接觸供電系統
47
5.1系統結構 47
5.2輸入級單元 48
5.2.1 EMI(Electro Magnetic Interference)濾波器 48
5.2.2突波吸收器與橋式整流器 49
5.2.3交流/直流轉換器(輔助電源) 50
5.3功率級單元(單級高功因非接觸供電系統) 51
5.3.1半橋串聯諧振轉換器 51
5.3.2單級高功因非接觸供電系統 55
5.3.2.1電路工作模式與主要波形 56
5.3.2.2功率開關驅動電路 62
5.4迴授控制單元 63
5.4.1微控制器(PIC18F2431) 63
5.4.2間距與負載偵測電路 64
5.4.3控制流程規劃 66
5.5非接觸變壓器單元 67
5.6輸出級單元 68
第六章 實驗與模擬 70
6.1系統規格 70
6.2實驗與模擬結果 71
6.2.1功因校正之驗證 71
6.2.2輸入儲能電感電流與下橋開關切換波形 78
6.2.3上、下橋開關零電壓切換與諧振波形 79
6.2.4間距與負載偵測訊號波形 83
6.2.5不同間距大小,偵測訊號對負載變化之關係 83
6.2.6一次側變頻控制輸出穩壓之波形 84
6.3實驗結果分析與討論 86
6.4硬體電路照片 88
6.4.1實驗儀器 88
第七章 結論與未來展望 89
參考文獻 91
作者簡歷 97
參考文獻 [1] N. H. Kutkut and K.W. Klontz, “Design Considerations for Power Converters Supplying the SAE J-1773 Electric Vehicle Inductive Coupler,” in Proc. IEEE APEC, vol. 2, pp. 841-847, Feb. 1997.
[2] H. J. Jiang and G. Maggetto, “Assessment of the Impact of Transformer Coupling Quality on Steady State Characteristics of Series Resonant Converters,” in Proc. IEEE PESC, vol. 2, pp. 1186-1191, June 1997.
[3] A. Ghahary and B. H. Cho, “Design of a Transcutaneous Energy Transmission System Using a Series Resonant Converter,” in Proc. IEEE PESC, pp. 1-8, June 1990.
[4] J. G. Hayes, J. T. Hall, M. C. Egan and J. M. D. Murphy, “Full-Bridge, Series-Resonant Converter Supplying the SAE J-1773 Electric Vehicle Inductive Charging Interface,” in Proc. IEEE PESC, vol. 2, pp. 1913-1918, June 1996.
[5] J. G. Hayes and M. G. Egan, “A Comparative Study of Phase-Shift Frequency and Hybrid Control of the Series Resonant Converter Supplying the Electric Vehicle Inductive Charging Interface,” in Proc. IEEE APEC, vol. 1, pp. 450-457, March 1999.
[6] G. Hua, E. X. Yang, Y. Jiang and F. C. Lee, “Novel Zero- Current- Transition PWM Converters,” IEEE Trans. Power Electron., vol. 9, pp. 601-606, Nov. 1994.
[7] J. Hirai, T. W. Kim and A. Kawamura, “Wireless Transmission of Power and Information and Information for Cableless Linear Motor Drive,” IEEE Trans. Power Electron., vol. 15, pp. 21-27, Jan. 2000.
[8] Y. Hiraga, J. Hirai, A. Kawamura, K. Ishioka, Y. Kaku and Y. Nitta, “Decentralized Control of Machines with the Use of Inductive Transmission of Power and Signal,” in Proc. IEEE-IAS Annu.l Meeting, vol. 2, pp. 875-881, Oct. 1994.
[9] J. Hirai, T. W. Kim and A. Kawamura, “Study on Crosstalk in Inductive Transmission of Power and Information,” IEEE Trans. Ind. Electron., vol. 46, pp. 1174-1182, Dec. 1999.
[10] J. Hirai, T. W. Kim and A. Kawamura, “Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information,” IEEE Trans. Power Electron., vol. 15, pp. 335-345, March 2000.
[11] T. Bieler, M. Perottet, V. Nguyen and Y. Perriard, “Cotactless Power and Information Transmission,” IEEE Trans. Ind. Appl., vol. 38, pp. 1226-1272, Oct. 2002.
[12] Limits for Harmonic Current Emissions(Equipment Input Current <16A Per Phase), IEC/EN61000-3-2, 1995.
[13] B. Wilkenson, “Power factor correction and IEC 555-2,” Power Techniques Magazine, pp. 20-24, 1991.
[14] Y. Suzuki, T. Teshima, I. Sugawara and A. Takeuchi, “Experimental studies on active and passive PFC circuits,” in Proc. IEEE TELEC, pp. 571-578, 1997.
[15] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: A survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[16] M. G. Egan, D. L. O’Sullivan, J. G. Hayes M. J. Willers and C. P. Henze, “Power Factor Corrected Single-Stage Inductive Charger for Electric Vehicle Batteries,” IEEE Trans. Ind.l Electron., vol. 54, no. 2, pp. 1217-1226, April 2007.
[17] T. Bieler, M. Perottet, V. Nguyen and Y. Perriard, “Contactless Power and Information Transmission,” IEEE Trans. Ind. Appl., vol. 38, pp. 1226-1272, Oct. 2002.
[18] H. Sakamoto and K. Harada, “A novel circuit for non-contact harging through electro-magnetic coupling,” in Proc. IEEE PESC, pp. 168-174, June. 1992.
[19] Y. Jang and M. M. Jovanovic, “A Contactless Electrical Energy Transmission System for Protable-Telephone Battery Chargers,” IEEE Trans. Ind. Electron., vol. 50, pp. 520-527, June 2003.
[20] R. Laouamer, M. Brunello and J. P. Ferrieux, “A Multi-Resonant Converter for Non-Contact Charging with Electromagnetic Coupling,” in Proc. IEEE APEC, vol. 1, pp. 450-457, Nov. 1997.
[21] J. Hirai, T. W. Kim and A. Kawamura, “Study on Crosstalk in Inductive Transmission of Power and Information,” IEEE Trans. Ind. Electron., vol. 46, pp. 1174-1182, Dec. 1999.
[22] C. G. Kim, D. H. Seo, J S. You, J. H. Park and B. H. Cho, “Design of a Contactless Battery Charger for Cellular Phone,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1238-1246, Dec. 2001
[23] H. Ayano, K. Yamamoto, N. Hino and I. Yamato, “Highly efficient contactless electrical energy transmission system,” IEEE Trans. Ind. Electron., pp. 1346-1369, Nov. 2002.
[24] 趙恆生,“感應充電器耦合電路設計研究”,私立中原大學電機所碩士論文,民國90年6月。
[25] G. B. Joung and B. H. Cho, “An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer,” IEEE Trans. Power Electron., pp. 1013-1022, Nov. 1998.
[26] B. Choi, J. Nho, H. Cha, T. Ahn and S. Choi, “Design and Implementation of Low-Profile Contactless Battery Charger Using Planar Printed Circuit Board Windings as Energy Transfer Device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, February 2004.
[27] S. Y. R. Hui and W. W. C. Ho, “A new generation of unversal con- tactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, May 2005.
[28] H. Abe, H. Sakamoto and K.Harada, “A Noncontact Charger Using a Resonant Converter with Parallel Capacitor of the Secondary Coil,” IEEE Trans. Ind. Appl., pp. 444-451 Vol. 36, No. 2, March/April 2000.
[29] H. Ayano, K. Yamamoto, N. Hino and I. Yamato, “Highly efficient contactless electrical energy transmission system,” in Proc. IECON 2002, pp. 1364-1369, Nov. 2002.
[30] Y. S. Kong, E. S. Kim, I. G. Hwang and H. K. Lee, “Highly-efficiency series-parallel resonant converter for the non-contact power supply,” in Proc. IEEE APECe, vol. 2, pp. 1496-1501, March 2005.
[31] 工研院/能資所“非接觸式供電技術探討”,電力電子月刊第三卷第三期,民國94年5月。
[32] T. F. Wu, J. C. Huang, S. Y. Tseng and Y. M. Chen. “A single-stage fast regulator with PFC based on an asymmetrical half-bridge topology,” IEEE Trans. Ind. Electron., vol. 52, no 1, pp. 139-150, 2005.
[33] L. Rossetto, G. Spiazzi and P. Tenti, “Control techniques for power factor correction converters,” in Proc. EPE International Power Electronics and Motion Control Conference, pp. 1310-1318, 1994.
[34] S. Wall and R. Jackson, “Fast controller design for single-phase power-factor correction systems,” IEEE Trans. Ind. Electron., vol. 44, no. 5, pp. 654-660, 1997.
[35] Z. Yang and P. C. Sen, “Power factor correction circuit with robust current control technique,” IEEE Trans. Aerospace and Electronic Systems, vol. 38, no. 4, pp. 1210-1219, 2002.
[36] M. Orabi and T. Ninomiya, “A unified design of single-stage and two-stage PFC converter,” in Proc. IEEE PESC, pp. 1720-1725, 2003.
[37] M. M. Jovanovic and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power appliccations-an overview,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 701-708, 2005.
[38] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE APEC, pp. 267-273, 1993.
[39] T. F. Wu and T. H. Yu, “Off-line applications with single-stage converters,” IEEE Trans. Ind. Electron., vol. 44, no. 5, pp. 638-647, 1997.
[40] H. Wei and I. Bataresh, “Comparasion of basic converter topologies for power factor correction,” in Proc. IEEE PESC, pp. 1162-1172, 1998.
[41] F. J. F. Martin, C. B. Viejo, J. C. A. Anton, M. A. P. Garcia, M. Rico-Secades and J. M. Alonso, “Analysis and design of a high power factor, single-stage electronic ballast for high-intensity discharge lamps,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 558-569, 2003.
[42] H. J. Chiu and L. W. Lin, “A high-efficiency soft-switched AC/DC converter with current-doubler synchronous rectification,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 709-718, 2005.
[43] Y.S. Lee, L.P. Wong, and D.K.W. Cheng, “Simulation and Design of Integrayed Magnetics for Power Converters,” IEEE Trans. Magn., vol. 2, pp. 1008-1018, March 2003.
[44] 賴柏洲編著,“基本電學”,第二版,全華科技圖書。
[45] 羅志宏,“具負載與間距偵測之非接觸式供電系統”,國立中央大學電機所碩士論文,民國95年6月。
[46] 賴慶明,“單級高功因LLC諧振電源轉換器之研製”,國立中央大學電機所碩士論文,民國95年6月。
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2007-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明