博碩士論文 945201091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.116.62.106
姓名 林耿呈(Geng-Cheng Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 特徵自我選取方法運用於多頻譜MRI影像之分類
(A Feature Selection Method Application on Multi-spectral MR Images Classification)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 核磁共振技術(Magnetic Resonance Imaging, MRI)為現今臨床上重要的檢測技術,其核磁共振技術最大優點是對人體不具侵襲性,且可以多方向掃描,並提供三度空間、高對比度的影像。可有利於醫師對疾病的診斷更加準確,以提高治療的正面效果。當一病人被安排做MRI造影後,對人體某一器官切面部位,會產生一系列的多頻譜影像(multi-spectral image)。如果把一系列的切面影像疊在一起組合而成後,便形成人體一個立體的三維結構。醫師就藉由這個立體結構得到一些醫學診斷的資訊,如器官的形狀、位置與體積大小。雖然經由多頻譜影像可獲得更多的資訊,但也造成病理判讀上的困擾。因此,我們將這些多頻譜影像經過精準的轉換法處理後,形成單一強化組織影像讓醫生更容易的對病理做診斷。
此篇論文提出了一個新特徵自我選取的方法,Target generation process(TGP)。並將TGP合併於Linear Discriminant Analysis (LDA) 與 Support Vector Machine (SVM)兩方法。我們稱此兩方法為Unsupervised Linear Discriminant Analysis (ULDA) 與 Unsupervised Support Vector Machine (USVM)。利用ULDA(或USVM)來強化出腦中的CSF(cerebrospinal fluid),白質(White Matter)以及灰質(Gray Matter)三大組織,使醫生做診斷時更加有效率。因此我們的工作即在研究如何從多頻譜MRI影像中,將腦部的主要組織(如CSF、WM、GM)給強化出來,且亦有一套方法來評比這些方法的可行性與強健性。
摘要(英) Magnetic Resonance Imaging (MRI) is a useful medical instrument in medical science. It provides unparallel capability of revealing soft tissue characterization as well as 3-D visualization and proposes the diagnosis without needing to intrude into the human body. MRI produces a sequence of multiple spectral images of tissues with a variety of contrasts, but the multi-spectral images cannot be conveniently used to be a pathology diagnosis correctly. In general, we need to transform the multi-spectral images to an enhanced image which is easier to be used for doctor’s clinical diagnosis. One of the potential applications of MRI in clinical practice is the brain parenchyma classification.
In this thesis, we first present a feature selection method called Target Generation Process (TGP) and the TGP generates a set of potential targets from an unknown background. Let the targets be the training data for the classifiers of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), respectively, such that the classification and segmentation for the MR images are achieved. The algorithm combining TGP and LDA (or SVM) is called Unsupervised Linear Discriminant Analysis (ULDA) (or Unsupervised Support Vector Machine (USVM)). Finally, the effectiveness of ULDA and USVM in target classification is evaluated by several MRI images experiments. In order to further evaluate its performance, they are compared with the method of Fuzzy c-mean. Several experiment results show that the ULDA and USVM have the better effective segmentation for multi-spectral MR images.
關鍵字(中) ★ 分類
★ 特徵自我選取
★ 多頻譜影像
★ 核磁共振
關鍵字(英) ★ feature selection
★ classification
★ unsupervised
★ Magnetic Resonance Imaging (MRI)
論文目次 中文摘要 i
Abstract ii
誌謝 iii
Contents iv
List of figures v
List of tables vi
Chapter 1 Introduction 1
1.1 Motivation and background 1
1.2 Review of previous works 2
1.3 The main tasks and the organization of the thesis 4
Chapter 2 The source of images 5
2.1 Preface 5
2.2 Real multi-spectral MR images 5
2.3 Phantom images 7
Chapter 3 The algorithms 12
3.1 Preface 12
3.2 Target generation process (TGP) 12
3.3 Unsupervised Linear Discriminant Analysis (ULDA) 18
3.4 Unsupervised Support Vector Machine (USVM) 26
3.5 Fuzzy C-mean 34
Chapter 4 Comparison 41
4.1 Introduction 41
4.2 Receiver Operating Characteristic (ROC) Analysis 41
Chapter 5 Conclusions 45
References 46
參考文獻 [1] C. M. Wang, et al., “An Unsupervised Orthogonal Subspace Projection Approach to MR Image Classification," Optical Engineering, vol. 41, no. 7, pp. 1546-1557, July. 2002
[2] C. M. Wang, et al., "Orthogonal Subspace Projection-Base Approaches to Classification of MR Images Sequences," Computerized Medical Imaging and Graphics, vol. 25, no. 6, pp. 465-476, December. 2001.
[3] C. M. Wang, et al., “Detection of Spectral Signatures in Multispectral MR Images for Classification,” IEEE Transactions on Medical Imaging, vol. 22, pp.50 – 61, January 2003
[4] C. M. Wang, et al., “An Unsupervised Kalman Filter-based Linear Mixing Approach to MRI Classification,” Proceedings of the 2004 IEEE Asia-Pacific Conference on Circuits and Systems, vol.2, pp.1105 – 1108, 6-9 December 2004.
[5] W. E.Reddick, et al., "Automated Segmentation and Classification of Multispectral Magnetic Rresonance Images of Brain using Artificial Neural Networks," IEEE Transactions on Medical Imaging, vol. 16, no. 6, pp. 911-918, December 1997.
[6] J. Alirezaie, M. E. Jernigan, and C. Nahmias "Automatic Segmentation of Cerebral MR Images using Artificial Neural Networks," IEEE Transactions on Nuclear Science, vol. 45, no. 4, pp. 2174-2182, August 1998
[7] J. S. Lin, R. M. Chen, Y. M. Huang, "Medical Image Segmentation using Mean Field Annealing Network," IEEE International Conference on Image Processing, vol. 2, pp. 855-858, October 1997
[8] J. S. Lin, K. S. Cheng, C. W. Mao, "Multispectral Magnetic Resonance Images Segmentation using Fuzzy Hopfield Neural Network," International Journal of Biomedical Computing, pp. 205-214, August 1996.
[9] M. N. Ahmed, S et al., “A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data,” IEEE Transactions on Medical Imaging, vol. 21, pp.193 – 199, March 2002.
[10] K. H. Chuang, et al., “Model-free Functional MRI Analysis using Kohonen Clustering Neural Network and Fuzzy C-means,” IEEE Transactions on Medical Imaging, vol. 18, pp.1117 – 1128, December 1999
[11] Y. Zhao and M. Li, “A Modified Fuzzy C-means Algorithm for Segmentation of MRI,” Proceedings of the Fifth International Conference on Computational Intelligence and Multimedia Applications, pp.391 – 395, 27-30 September 2003
[12] M. N. Ahmed, et al., “Bias Field Estimation and Adaptive Segmentation of MRI Data using a Modified Fuzzy C-means Algorithm,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 1, 23-25 June 1999
[13] N. A. Mohamed, M. N. Ahmed, and A. Farag, “Modified Fuzzy C-mean in Medical Image Segmentation,” 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.6, pp.3429 – 3432, 15-19 March 1999
[14] M. C. Clark, et al., “Automatic Tumor Segmentation using Knowledge-based Techniques,” IEEE Transactions on Medical Imaging, vol.17 pp.187-201, 1998
[15] W. S. Yambor, “Analysis of PCA-based and Fisher Discriminant-Based Image Recognition Algorithms,” M.S. Thesis, Technical Report CS-00-103, Computer Science Department, Colorado State University, July 2000
[16] K. Etemad and R. Chellappa, “Discriminant Analysis for Recognition of Human Face Images,” Journal of the Optical Society of America A, Vol. 14, pp. 1724-1733, August 1997
[17] J. W. Hung and L. S Lee, “Optimization of Temporal Filters for Constructing Robust Features in Speech Recognition,” IEEE Transactions on Audio, Speech and Language Processing, Vol. 14, pp.808 - 832, May 2006
[18] P. Howland, M. Jeon, and H. Park, “Structure Preserving Dimension Reduction for Clustered Text Data Based on the Generalized Singular Value Decomposition,” SIAM Journal on Matrix Analysis and Applications, Vol. 25, pp.165-179 , 2003
[19] C. Cortes, V. Vapnik, "Support Vector Networks," Machine Learning, vol.20, pp. 273-297, 1995.
[20] S. Mika. ‘Kernel Fisher Discriminants,” PhD Thesis, Technische Universit
指導教授 王文俊(Wen-June Wang) 審核日期 2007-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明