博碩士論文 945201102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.145.196.61
姓名 楊家軍(Chia-Chun Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於V頻段射頻接收機前端電路之研製
(Implementation of RF Receiver Front-End Circuits for V-Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係以WINTM 0.15-μm pHEMT與TSMC 0.18-μm CMOS製程,研製應用於V頻段射頻接收機前端電路。主要設計電路包含低雜訊放大器、變壓器回授式壓控振盪器、次諧波電阻性混頻器與星形雙平衡混頻器。
次諧波電阻性混頻器,電路中包含在LO端使用的堆疊式馬遜平衡器與在RF端使用的微小型功率分配器。跟一般平面式的馬遜平衡器相比使用堆疊式馬遜平衡器主要是提高耦合量,以便獲得低的介入損耗與小的面積。而功率分配器是使用縮小尺寸的技術縮減原本需要的四分之一波長的傳輸線。綜合以上原因,此混頻器可獲得較小的晶片面積。星形雙平衡混頻器,電路中含有兩個小型化的對偶巴倫。縮小化的對偶巴倫是使用並電容在電路中的輸入、輸出或終止端。於此電路中對偶巴倫的微小化設計,相較於基本型之對偶巴倫將節省60%的面積,因此得到一個極小面積之星形雙平衡混頻器。
各電路之量測特性如下:低雜訊放大器方面:52.7 GHz的三級串接低雜訊放大器增益為13.59 dB,輸入反射損耗為11.76 dB,輸出反射損耗為12.81 dB,而輸入1 dB壓縮點為-12 dBm,模擬之雜訊指數在60 GHz為4.06 dB。壓控振盪器方面:26.2 GHz變壓回授式壓控振盪器,頻率可調範圍為473 MHz,輸出功率為-4.76 ~ -1.83 dBm,離主頻1 MHz之相位雜訊為-100.3 dBc/Hz,振盪器本身消耗功率為9.6 mW。混頻器方面: 次諧波電阻性混頻器於射頻頻率60 GHz時的轉換損耗為14.96 dB,輸入1-dB壓縮點為10 dBm,輸入三階交互調變交叉點為28 dBm,本地振盪對中頻訊號隔離度大於35 dB,本地振盪對射頻隔離度大於35 dB,射頻對中頻隔離度大於19 dB,晶片面積為0.99 × 0.82 mm2;星形雙平衡混頻器於射頻為60 GHz時,量測得到的轉換損耗為8.99 dB,輸入1-dB壓縮點為8.27 dBm,本地振盪對中頻訊號隔離度大於24 dB,本地振盪對射頻隔離度大於20 dB,射頻對中頻隔離度大於35 dB,晶片面積為0.68 × 0.59 mm2。
摘要(英) The thesis presents the of RF front-end circuits for V-band receiver, which are both implemented on WINTM 0.15-μm pHEMT and TSMC 0.18-μm CMOS technologies. The implemented circuits include a low noise amplifier, a transformer feedback voltage controlled oscillator, a sub-harmonically pumped resistive mixer, and a doubly balance star mixer.
The sub-harmonically pumped resistive mixer includes an LO stacked Marchand balun and a miniaturized RF power divider. The stacked layout for LO balun is used to increase the coupling factor and obtain the low insertion loss and compact size which commonly used in planar balun. The RF power divider utilizes the reduce-size technique to miniaturize the required λ/4 transmission line. Therefore, the mixer accomplishes a compact chip size, for instance, the doubly balanced star mixer was realized by two proposed dual baluns and achieved a very compact form factor. The reduced sized dual balun can be simply realized by shunting overlay capacitance at the input, output, or end of balun. The designed miniature dual balun can save more than 60% chip area in comparison to that in conventional dual balun. In low noise amplifier, a 52.7 GHz three cascade stages low noise amplifier achieved a power gain of 13.59 dB, input/output return losses of 11.76 dB and 12.81 dB, respectively. The measured 1-dB gain compression point was -12 dBm, and simulated noise figure was 4.06 dB at 60 GHz. In voltage controlled oscillator, a 26.2 GHz transformer feedback voltage controlled oscillator obtained a tuning range of 437 MHz, an output power of -4.76 ~ -1.83 dBm. A -100.3 dBc/Hz phase noise at 1 MHz offset frequency was measured under the power consumption of 9.6 mW.
In mixer design, a 60 GHz sub-harmonically pumped resistive mixer achieved the conversion loss of 14.96 dB, a input 1-dB gain compression point of 10 dBm, an input third order intermodulation intercept point of 28 dBm, an LO to IF isolation of better than 35 dB, an LO to RF isolation of greater than 35 dB, an RF to IF isolation of greater than 19 dB. The chip area yields a compact size less than 0.99 × 0.82 mm2. A 60 GHz doubly balanced star mixer achieved a conversion loss of 8.99 dB, an input 1-dB gain compression point of 8.27 dBm, an LO to IF isolation of better than 24 dB, an LO to RF isolation of greater than 20 dB, an RF to IF isolation of greater than 35 dB. The fabricated chip area is only 0.68 × 0.59 mm2.
關鍵字(中) ★ 低雜訊放大器
★ 壓控振盪器
★ 次諧波混頻器
★ 星行混頻器
關鍵字(英) ★ LNA
★ star mixer
★ VCO
★ sub-harmonic mixer
論文目次 第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡述 2
第二章 低雜訊放大器 3
2-1低雜訊放大器簡介 3
2-1.1 低雜訊放大器之重要參數 3
2-2 V頻段低雜訊放大器 5
2-2.1電路架構與原理 5
2-2.2設計流程 7
2-2.3量測結果 8
2-2.4結果討論 12
第三章 壓控振盪器 13
3-1壓控振盪器簡介 13
3-1.1壓控振盪器重要規格參數 13
3-2變壓器回授型之壓控振盪器 15
3-2.1電路架構與原理 15
3-2.2設計流程 18
3-2.3量測結果 19
3-2.4結果討論 23
第四章 混頻器 24
4-1混頻器簡介與原理 24
4-1.1壓控振盪器重要規格參數 25
4-2次諧波電阻性混頻器 32
4-2.1電路架構與原理 32
4-2.2設計流程 45
4-2.3量測結果 46
4-2.4結果討論 53
4-3星形雙平衡混頻器 54
4-3.1電路架構與原理 54
4-3.2設計流程 64
4-3.3量測結果 65
4-3.4結果討論 72
第五章 結論 73
5-1 結論 73
5-2 未來期許與研究方向 74
參考文獻 75
參考文獻 [1] Y. Sun, J. Borngraber, F. Herzel, and W. Winkler, “A fully integrated 60 GHz LNA in SiGe:C BiCMOS technology,” Bipolar/BiCMOS Circuits and Technology Meeting, Proceedings of the, pp. 14-17, 9-11 Oct. 2005.
[2] S. Handa, E. Suematsu, H. Tanaka, Y. Motouchi, M. Yagura, A. Yamada, and H. Sato, “60GHz-band low noise amplifier and power amplifier using InGaP/GaAs HBT technology,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 25th Annual Technical Digest IEEE, pp. 227-230, 2003.
[3] K. Fujii, M. Adamski, P. Bianco, D. Gunyan, J. Hall, R. Kishimura, C. Lesko, M. Schefer, S. Hessel, H. Morkner, and A. Niedzwiecki, “A 60GHz MMIC Chipset for 1-Gbith Wireless Links,” Microwave Symposium Digest, IEEE MTT-S International, vol. 3, pp. 1725-1728, 2-7 June 2002.
[4] Y. Mimino, K. Nakamura, Y. Hasegawa, Y. Aoki, S. Kuroda, and T. Tokumitsu, “A 60 GHz millimeter-wave MMIC chipset for broadband wireless access system front-end,” Microwave Symposium Digest, IEEE MTT-S International, vol. 3, pp. 1721-1724, 2-7 June 2002.
[5] K. Nishikawa, B. Piernas, K. Kamogawa, T. Nakagawa, and K. Araki, “Compact LNA and VCO 3-D MMICs using commercial GaAs PHEMT technology for V-band single-chip TRX MMIC,” Microwave Symposium Digest, IEEE MTT-S International, vol. 3, pp. 1717-1720, 2-7 June 2002.
[6] 李金龍, “雜訊消除放大器與寬頻矩陣型分佈式放大器暨壓控振盪器之研製,” 碩士論文, 國立中央大學, 2006。
[7] J. J. Rael and A. A. Abidi, “Physical Process of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-572, May 2000.
[8] T. Song, S. Ko, D.-H. Cho, H.-S. Oh, C. Chung, and E. Yoon, “A 5GHz Transformer-Coupled CMOS VCO Using Bias-Level Shifting Technique,” in Proc. IEEE RFIC Symp., pp. 127-130, June 2004.
[9] C. R. C. De Ranter and M. S. J. Steyaert, “A 0.25-μm CMOS 17 GHz VCO,” I. Solid-State Circuits, session 23, pp. 370-371, Feb 2001.
[10] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz Integrated CMOS Frequency Sources with a Quadrature VCO using Transformers,” in Proc. IEEE RFIC Symp., pp. 269-272, June 2004.
[11] T.-P. Wang, R.-C. Liu, H.-Y. Chang, L.-H. Lu, and H. Wang, “A 22-GHz Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 12, pp. 859–861, Dec. 2005.
[12] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp.673–675, Oct. 2005.
[13] A. W. L. Ng, G. C. T. Leung, K. C. Kwok, L. L. K. Leung, and H. C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18 μm CMOS,” I. Solid-State Circuits, session 8, pp. 158-160, Feb. 2005.
[14] C. H. Lee and J. Laskar, “Compact Ku-band transmitter design for satellite communication applications :from system analysis to hardware implementation,” Kluwer Academic Publishers, 2002
[15] S. A. Maas, “ The RF and microwave circuit design cookbook,” Artech House, 1998
[16] H. Zirath, I. Angelov, and N. Rorsman, “A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” Microwave Symposium Digest, 1992., IEEE MTT-S International , 1-5 Jun 1992
[17] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, ” A millimeter-wave monolithic sub-harmonically pumped resistive mixer,”, 1999 Asia Pacific Conference on Microwave, Volume: 2 , Nov 1999
[18] R. S. Virk, L. Tran, M. Matloubian, M. Le, M. G. Case, and C. Ngo,” A comparison of W-band MMIC mixers using InP HEMT technology,” Microwave Symposium Digest, 1997., IEEE MTT-S International , Volume: 2 ,pp. 8-13 Jun 1997.
[19] S. A. Maas, “A GaAs MESFET Balanced Mixer with Very Low Intermodulation,” Microwave Symposium Digest, MTT-S International, Volume 87, Issue 2, pp.895 – 898, 1994.
[20] K. S. Ang and I. D. Robertson, “Analysis and Design of Impedance-Transforming Planar Marchand Baluns,” IEEE Trans. Microwave Theory Tech. Vol. 49 , NO.2, pp402-406, February 2001.
[21] I. H. Kang and J. S. Park, “A reduced-size divider using the coupled line equivalent to a lumped inductor”, Microwave Journal, 46, 7, ABI/INFORM Trade & Industry, pp. 72, Jul. 2003.
[22] M. Rajesh, J. B. Inder, and B. Prakash, “RF and microwave coupled-line circuits,” Artech House,1999.
[23] S. E. Gunnarsson and H. Zirath, “A 60 GHz MMIC dual-quadrature mixer in pHEMT technology for ultra wideband IF signals and high LO to RF isolation,” Microwave Symposium Digest, 2005 IEEE MTT-S International, pp. 4,2005.
[24] S. Gunnarsson, D. Kuylenstierna, and H. Zirath, “A 60 GHz MMIC pHEMT image reject mixer with integrated ultra wideband IF hybrid and 30 dB of image rejection ratio,” 2005 Asia Pacific Conference on Microwave, Vol. 1, pp. 4,2005
[25] M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of a miniature W-band MMIC subharmonically pumped resistive mixer,” Microwave Symposium Digest, 2005 IEEE MTT-S International, Vol. 1, pp. 235-238, 2004.
[26] M. Varonen, M. Karkkainen, J. Riska, P. Kangaslahti, and K. A. I. Halonen, “Resistive HEMT mixers for 60-GHz broad-band telecommunication,” Microwave Theory and Techniques, IEEE Transactions on, Vol. 53, pp. 1322-1330, 2005.
[27] S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” Solid-State Circuits, IEEE Journal, Vol. 40, pp. 2174 - 2186, 2005.
[28] 連婉茹, “V頻段微型化混波器之研製” 碩士論文, 國立中央大學, 2006。
[29] K. Hettak, G.A. Morin, and M.G. Stubbs, “Compact MMIC CPW and Asymmetric CPS Branch-Line Couplers and Wilkinson Dividers Using Shunt and Series Stub Loading” Microwave Theory and Techniques, IEEE Transactions, Volume53, Issue 5, pp.1624 – 1635, May 2005.
[30] Y. X. Guo, Z. Y. Zhang, L. C. Ong, and M. Y. W. Chia, “Design of Miniaturized LTCC Baluns” International Journal of RF and Microwave Computer-Aided Engineering 16:, pp.268-279,2006.
[31] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and Design of Miniaturized Lumped-Distributed Impedance-Transforming Baluns” IEEE Trans Microwave Theory Tech 51,pp.1009-1017,2003
[32] H. K. Chiou, Y. R. Juang, and H. H. Lin, “Miniature MMIC star double balanced mixer using lumped dual balun,” Electronics Letters Vol. 33, Issue 6, pp.503 – 505, 13 March 1997.
[33] K. W. Yeom, and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory and Tech., Vol. 53, Issue 7, pp.2435 – 2440, July 2005.
[34] C. Y. Chang, C. K. Liao, and D.C. Niu, “A 1.5 to 37 GHz ultra-broadband MMIC Mouw's star mixer,” 2005 European Microwave Conference Vol. 2, pp.4-6 Oct. 2005.
[35] Y. I. Ryu, K. W. Kobayashi, and A. K. Oki, “A monolithic broad-band doubly balanced EHF HBT star mixer with novel microstrip baluns,” in IEEE Microwave Millimeter-Wave Monolithic Circuit Symp. Dig. , pp. 119-122,1995.
[36] S. A. Maas, and K. W. Chang, “A broad-band planar, doubly balanced monolithic Ka-band diode mixers,” IEEE Trans. Microw. Theory and Tech., vol. 41, no. 12, pp. 2330-2335 ,Dec. 1993.
[37] 劉偉正, “應用於ISM與Ka頻段之射頻收發機前端電路研製,” 碩士論文, 國立中央大學, 2004。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2007-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明