博碩士論文 945201104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.144.93.73
姓名 林紀賢(Chi-Hsien Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波低相位雜訊壓控振盪器之研製
(Design of Microwave Low Phase Noise VCOs)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製
★ 氧化鋁基板上微波功率放大器之研製★ 氧化鋁基板上積體化微波降頻器電路之研製
★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益
★ LDMOS功率電晶體元件設計、特性分析及其模型之建立★ CMOS無線通訊接收端模組之設計與實現
★ 積體化微波被動元件之研製與2.4GHz射頻電路設計★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立
★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製
★ 二維至三維微波被動元件與射頻電路之設計與研製★ CMOS射頻無線通訊發射端電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現在通訊系統中,低相位雜訊的壓控振盪器是不可或缺的元件,尤其在高階的數位調變系統,如正交振幅調變(n-QAM)與相位振幅調變(n-PSK)。因此如何設計一個具有低相位雜訊的壓控振盪器是值得探討。
本論文研究主題在於使用鉮化鎵異質接面雙極性電晶體及互補式金氧半場效電晶體製程,設計實現低相位雜訊壓控振盪器。論文主要可以分為三大部份,首先是介紹振盪器的設計與應用,並同時實現一個Ku頻段的壓控振盪器。接下來是描述π型回授振盪器原理及優點,並實現一個應用於Q頻段的平衡π型回授的壓控振盪器。論文的最後一部份主要在討論四相位振盪器之直接升頻正交調器的原理及應用,並實現15 GHz的四相位振盪器之直接升頻正交調器。
首先我們使用穩懋半導體2-μm鉮化鎵異質接面雙極性電晶體製程製作一個
應用於Ku 頻帶的壓控振盪器,可調頻率範圍從14.6 到16.6 GHz,其相位雜訊在
1-MHz位移時為-112.5 dBc/Hz。另外,在核心電路偏壓電流為12.5 mA及偏壓
為2 V 時,此壓控振盪器可提供最大輸出功率為6.9 dBm。此壓控振盪器擁有低
相位雜訊及寬的可調頻率優點。另外,本論文呈現設計了一個使用平衡π 型回授的Q 頻段壓控振盪器。此
壓控振盪器同樣是使用穩懋半導體2-μm鉮化鎵異質接面雙極性電晶體製程設計
製作。在核心消耗功率為20 mW 下,,其可調的頻率範圍從41.2 到42.1 GHz。在
1-MHz 位移處,量測所得到的相位雜訊為-105.5 dBc/Hz。此電路擁有低相位雜訊
及低功率消耗優點。
最後為一利用台積電0.18-μm互補式金氧半場效電晶體製程製作四相位振盪器之直接升頻正交調器。電路的主要架構是由兩組串聯耦合壓控振盪器及直接
升頻正交調器組成。此架構的優點是可方便計算四相位振盪器的振幅及相位誤
差。此電路具有1 GHz 的可調頻寬和在載波1-MHz 處其相位為-115 dBc/Hz 雜
訊。在偏壓為1.7 V時,核心電路消耗功率為5.1 mW。另外,此電路的振幅和
相位誤差分別為0.5 dBm 及3°。此四相位振盪器之直接升頻正交調器擁有低相
位雜訊及低功率消耗優點外,還具有低的優位指數(FOM)。
摘要(英) The low phase noise VCO is necessary in the modern communications systems, especially for the high-level digital modulation schemes, such as n-QAM and n-PSK modulation. Therefore, a low phase noise VCO is essential for the applications.
The goal of the thesis is to design and implement low phase noise VCOs using GaAs HBT and CMOS technologies. The thesis was organized into three parts. An introduction was first summary to present the design and implement of the oscillators, and a Ku-band VCO is demonstrated in this part. The principle and advantages of the π-feedback oscillator is described, and the balanced π-feedback VCO is implemented by using 2-μm HBT process. Finally, the basics and application of the quadrature
VCO with a reflection-type IQ modulator is presented and then the quadrature VCO
with a reflection-type IQ modulator is implemented using a 0.18-μmCMOS process.
The Ku-band VCO is designed and implemented using WIN Semiconductors
2-μmGaAs HBT technology. The frequency is from 14.6 to 16.6 GHz with a phase
noise of -112.5 dBc/Hz. Besides, the VCO can provide a maximum output power of
6.9 dBm under core current of 12.5 mA from a 2 V supply. This VCO has the
advantages of a low phase noise and wide tuning range.
In addition, the Q-band VCO using balanced π-feedback is demonstrated in this
thesis. With a core power consumption of 20 mW, the tuning range is from 41.2 to
42.1 GHz. The measured phase noise is -105.5 dBc/Hz at 1-MHz offset. This circuithas the advantages of low phase noise and low power consumption.
Finally, the QVCO with a reflection-type IQ modulator using standard 0.18-mm
bulk CMOS technology is presented. A serial-coupled QVCO and a reflection-type IQ
modulator are combined in a single chip. The advantage of this configuration is easy
evaluation of the amplitude and phase errors of the QVCO. The circuit achieves the
tuning range of 1 GHz and the phase noise of -115 dBc/Hz at 1-MHz. The total power
consumption is 5.1 mW with a dc supply voltage of 1.7 V. Moreover, the amplitude
and phase errors of the QVCO are with in 0.5 dB and 3°, respectively. The QVCO
with a reflection-type IQ modulator has the advantages of low phase noise, low power
consumption and the lowest FOM.
關鍵字(中) ★ 壓控振盪器
★ 正交壓控振盪器
★ 相位雜訊
關鍵字(英) ★ phase noise
★ QVCO
★ VCO
論文目次 Abstract I
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Contributions 2
1.3 Chapter Outline 3
Chapter 2 Basics of Voltage Controlled Oscillators 5
2.1 Voltage Controlled Oscillator Design Theory 5
2.1.1 Basic Oscillator Model 5
2.1.2 Negative-Resistance Oscillator 6
2.1.3 Feedback Oscillator 8
2.2 LC VCO Models 10
2.3 Design Parameters of the LC VCOs 11
2.4 Basic Oscillator Topologies 14
2.4.1 Cross-Coupled VCO 14
2.4.2 Colpitts VCO 18
Chapter 3 Design of the Ku-Band VCO using 2-μm GaAs HBT
Technology 22
3.1 The LC tank in GaAs process 22
3.2 Circuit Design 24
3.3 Measurement Results 28
3.4 Summary 30
Chapter 4 Design of the Q-Band Balanced π-Feedback Voltage
Control Oscillator 32
4.1 The Modeling of the Varactor 32
4.2 Q-Band π-Feedback VCO using 2-mm GaAs HBT Technology 35
4.2.1 Technology Description 35
4.2.2 Circuit Design 35
4.3 Measurement Results 40
4.4 Summary 43
Chapter 5 Design of the 15 GHz QVCO with a Reflection-Type IQ
Modulator 45
5.1 Introduction to a Quadrature VCO with Reflection-Type IQ Modulator 47
5.1.1 Concept of a Quadrature VCO 47
5.1.2 Concept of Quadrature Modulator 48
5.2 A 15 GHz QVCO with a Reflection-Type IQ Modulator using 0.18-mm
CMOS technology 50
5.2.1 LC Tank Implementation 50
5.2.2 Circuit Design 52
5.3 Measurement Results 57
5.4 Summary 62
Chapter 6 Conclusions 63
References 65
參考文獻 [1] D. K. Shaeffer, S. Kudszus, “Performance-optimized microstrip coupled VCOs for 40-GHz and 43-GHz OC-768 optical transmission,” IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1130-1138, July 2003.
[2] W. J. Ho, M. F. Chang, A. Sailer, P. Zampardi, D. Deakin, B. McDermott, R. Pierson, J. A. Higgins, and J. Waldrop, “GaInP/GaAs HBT's for High-speed Integrated Circuit Applications,” IEEE Electron Device Letters, vol. 40, no. 11, pp. 2113-2114, Nov. 1993.
[3] T. P. Liu and E. Westerwick, “5-GHz CMOS radio transceiver front-end chipset,” IEEE Journal of Solid-State Circuits, vol. 35, no. 12, pp. 1927-1933, Dec. 2000.
[4] S. Hackl, J. Bock, G. Ritzberger, M. Wurzer, and A. L. Scholtz “A 28-GHz monolithic integrated quadrature oscillator in SiGe Bipolar Technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 135-137, Jan. 2003.
[5] H. Y. Chang, Y. H. Cho, M. F. Lei, C. S. Lin, T. W. Huang, and H. Wang, “A 45-GHz Quadrature Voltage Controlled Oscillator with a Reflection-Type IQ Modulator in 0.13-μm CMOS Technology” IEEE MTT-S Int. Microwave Symp. Dig., pp. 739-742, June 2006.
[6] B. Razavi, RF Microelectronics, Prentice-Hall, 1998
[7] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc. 2001
[8] R. Ludwig and P. Bretchko, RF Circuit Design Theory and Applications, Prentice-Hall, 2000.
[9] G. Gonzalez, Microwave Transistor Amplifier: Analysis and Design, 2nd edition, Prentice-Hall, Upper Saddle River, N.J., 1997.
[10] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[11] D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[12] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
[13] R. Aparicio and A. Hajimiri, “A noise-shifting Differential Colpitts VCO,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1728-1736, Dec. 2002.
[14] A. Scuderi, and G. Palmisano, “A Low-Phase-Noise Voltage-Controlled Oscillator for 17-GHz Applications,” IEEE Microwave and Wireless Comp. Lett. vol. 16, no. 4, pp. 191-193, Apr. 2006.
[15] D. Baek, S. Ko, J. G. Kim, D. W. Kim, and S. Hong, “Ku-Band InGaP-GaAs HBT MMIC VCOs with Balanced and Differential Topologies,” IEEE Transactions on microwave theory and techniques, vol. 52, no. 4, April 2004.
[16] H. Blanck, S. L. Delage, S. Cassette, E. Chartier, D. Floriot, M-A. Poisson, C. Brylinski, D. Pons, P. Roux, P. Bourne, and P. Quentin, “Fully Monolithic Ku and Ka- band GaInP/GaAs HBT Wideband VCOs, ”IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 127-130, May 1994..
[17] K. W. Kobayashi, L. T. Tran, A. K. Oki, T. Block, and D. C. Streit, “A Coplanar Waveguide InAlAs/InGaAs HBT MonoLithic Ku-band VCO,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 9, Sep. 1995.
[18] H. Zirath, T. Masuda, R. Kozhuharov, and M. Ferndahl, “Development of 60-GHz Front-End Circuits for a High-Data-Rate Communication System,” IEEE Journal of Solid-State Circuits, vol. 39, no. 10, pp. 1640-1649, July 2004.
[19] G. Xuebang, L. Yaping, and L. Bin, “An Improved Large-Signal Model for Varactor and GaAs FET Diodes,” Asia Pacific Microwave Conference, vol. 2, pp. 729-732, Dec. 1997.
[20] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 7, July 1988.
[21] M. Bao, Y. Li, and H. Jacobsson, “A 25-GHz ultra-low phase noise InGaP/GaAs HBT VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 11, pp. 751-753, Nov. 2005.
[22] J. G. Kim, D. H. Baek, S. H. Jeon, J. W. Park and S. Hong, “A 60 GHz InGaP/GaAs HBT push-push MMIC VCO,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 885-888, June 2003.
[23] A. Megej, K. Beilenhoff and H. L. Hartnagel, “Fully monolithically integrated feedback voltage controlled oscillator,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 6, pp. 239-241, June 2000.
[24] H. Li and H. M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp. 184-191, Feb. 2003.
[25] Sonnet User’s Manual, Release 9.0, Sonnet Software Inc., North Syracuse, NY, May, 2003.
[26] H. Do-Ky, M. Stubbs, T. Laneve, C. Glaser and D. Drolet, “Ka-band MMIC voltage-controlled oscillators,” Asia-Pacific Microwave Conference Proceedings, vol. 2, pp. 545-548, Dec. 1997.
[27] M. S. Heins, D. W. Barlage, M. T. Fresina, D. A. Ahmari, Q. J. Hartmann, G. E. Stillman and M. Feng, “Low phase noise Ka-band VCOs using InGaP/GaAs HBTs and coplanar waveguide,” IEEE Radio Frequency Integrated Circuits Symposium Digest, vol. 1, pp. 215-218, June 1997.
[28] C. Su, S. Thoka, K. C. Tiew and R. L. Geiger, “A 40 GHz modified-Colpitts voltage controlled oscillator with increased tuning range,” in Proc. ISCAS, vol. 1, pp. 717-720, May 2003.
[29] M. Bao, Y. Li and H. Jacobsson, “A 21.5/43-GHz dual-frequency balanced Colpitts VCO in SiGe technology,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1352-1355, Aug. 2004.
[30] J. Lin, Y. K. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, Al Tate, R. F. Kopf, and R. W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO's in CPW structure,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 11, pp. 379-381, Nov. 1995.
[31] H. Y. Chang, P. S. Wu, T. W. Huang, H. Wang, C. L. Chang, and J. Chern, "Design and analysis of CMOS broadband compact high-linearity modulators for Gigabit microwave/millimeter-wave applications," IEEE Trans. on Microwave Theory and Tech, pp. 20-30, Jan. 2006.
[32] W. Z. Chen, C. L. Kuo, and C. C. Liu, “10 GHz Quadrature-Phase Voltage Controlled Oscillator and Prescaler,” IEEE 29th European Solid-State Circuits Conference, pp. 361-364, Sept. 2003.
[33] "Optimization of quadrature modulator performance," Technical Notes and Articles, RF Micro Devices Inc.
[34] Yi-Hsien Cho, “Design of Microwave and Millimeter-wave CMOS VCOs,” M.S. thesis, Graduate institute of communication engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2005.
[35] J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC-Oscillators,” in Custom Integrated Circuits Conference, Orlando, FL, pp. 567-572, May 2000.
[36] Sabine Hackl, Josef Bock, Gunter Ritzberger, Martin Wurzer, and Arpad L. Scholtz “A 28-GHz monolithic integrated quadrature oscillator in SiGe Bipolar Technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 135-137, January 2003.
[37] W. L. Chan, H. Veenstra, and J. R. Long, “A 32GHz quadrature LC-VCO in 0.25μm SiGe BiCMOS Technology,” 2005 International Solid-State Circuit Conference Digest, San Francisco, USA, pp. 538-539.
[38] Donghyun Baek, Taeksang Song, Euisik Yoon, and Songcheol Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 10, pp. 446-448, October 2003.
[39] Sangsoo Ko, and et al, “20 GHz Integrated CMOS frequency sources with a quadrature VCO using transformers,” 2004 Radio Frequency Integrated Circuits Symposium Digest, Dallas, USA, pp. 269–272.
[40] P. G.Wilson and R. D. Carver, “An easy-to-use FET DRO design procedure suited to most CAD programs,” in IEEE MTT-S Microwave Symp. Dig., vol. 3, June 1999, pp. 1033–1036.
指導教授 詹益仁、張鴻埜
(Yi-Jen Chan、Hong-Yeh Chang)
審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明