博碩士論文 945202075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.229.118.253
姓名 胡家穎(Jia-Ying Hu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用服務探勘於發現複合服務之研究
(Service Mining for Composite Service Discovery)
相關論文
★ 應用自組織映射圖網路及倒傳遞網路於探勘通信資料庫之潛在用戶★ 基於社群網路特徵之企業電子郵件分類
★ 社群網路中多階層影響力傳播探勘之研究★ 以點對點技術為基礎之整合性資訊管理 及分析系統
★ 在分散式雲端平台上對不同巨量天文應用之資料區域性適用策略研究★ 應用資料倉儲技術探索點對點網路環境知識之研究
★ 從交易資料庫中以自我推導方式探勘具有多層次FP-tree★ 建構儲存體容量被動遷徙政策於生命週期管理系統之研究
★ 利用權重字尾樹中頻繁事件序改善入侵偵測系統★ 有效率的處理在資料倉儲上連續的聚合查詢
★ 入侵偵測系統:使用以函數為基礎的系統呼叫序列★ 有效率的在資料方體上進行多維度及多層次的關聯規則探勘
★ 在網路學習上的社群關聯及權重之課程建議★ 在社群網路服務中找出不活躍的使用者
★ 利用階層式權重字尾樹找出在天文觀測紀錄中變化相似的序列★ 漢字發音系統之音韻關聯規則探勘
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今網際服務(Web Service)已經成為許多大型企業用來整合商業流程的主
要技術,如何從現有的服務中發現複合服務的議題成為熱門的研究領域。本篇論
文主要是利用資料探勘領域中兩種方法來探勘網際服務使用者記錄,以分析網際
服務之間的關係,第一種方法,多層關聯規則探勘方法(Multilevel Association
Rules Mining)可探勘出常用的服務組合,且可發現服務間較高層次上的關係;
第二種方法,序列模式探勘(Sequential Pattern Mining)可探勘出常用序列的服
務組合關係。前者產出結果為無順序性的相關服務組合,可作為一種建議,讓使
用者自行選擇使用;後者產出結果為具有順序性相關的服務組合,並有助於整合
成真實的商業流程。實驗顯示我們提出的方法具有實用性、彈性及效率,根據本
方法探勘的結果促使容易整合複合服務組合。
摘要(英) Web Service Technology is being applied to organizing business
process in many large-scale enterprises. Discovery of Composite Service, therefore, has become an active research area. In this paper, we propose
two methodologies in data mining area to analyze the relationship among
these web services from web service usage log. First, Multilevel
Association Rules Mining is used for discovery of frequently used sets of
web services. Additionally, it can extract high-level relationships among
web services. Second, Sequential Pattern Mining is used for discovery of
the sequence of web services. The former produces unordered sets of web
services which can be used as suggestions to the user. The latter generates
time-ordered sets of web services which can be exploited to integrate into
a real business process. The empirical result shows the proposed
methodologies are useful, flexible, and efficient. It is able to integrate
simple web services into a composite service according to the mining
result of the proposed approach.
關鍵字(中) ★ 資料探勘
★ 發現網際服務
關鍵字(英) ★ Data Mining
★ Web Service Discovery
論文目次 Chinese Abstract……………………………………………… i
English Abstract……………………………………………… ii
Table of Contents …………………………………………… iii
List of Figures………………………………………………… v
List of Tables ……………………………………………… vii
Chapter 1 Introduction ……………………………………… 1
Chapter 2 Related Work……………………………………… 5
Chapter 3 System Architecture……………………………… 8
3-1 Web Logging……………………………………………………………10
3-2 Pre-processing……………………………………………………………12
3-3 Concept Hierarchy………………………………………………………15
3-4 Pattern Discovery…………………………………………………………17
Chapter 4 Service Mining for Composite Service Discovery…18
4-1 Multilevel Association Rule Mining ……………………………………19
4-1-1 Association Rule Mining…………………………………………20
4-1-2 Multilevel Association Rule Mining……………………………21
4-2 Sequential Pattern Mining………………………………………………36
4-2-1 WAP-tree Algorithm……………………………………………36
iii
4-2-2 PLWAP-tree Algorithm…………………………………………36
Chapter 5 Experiment Result……………………………… 51
5-1 Two Cases……………………………………………………………… 51
5-1-1 Case 1 …………………………………………………………51
5-1-2 Case 2 …………………………………………………………52
5-2 The Generation of Web Usage Log…………………………………… 53
5-3 Performance…………………………………………………………… 54
5-3 Performance…………………………………………………………… 54
5-3-1 Comparison of Execution Time……………………………54
5-3-2 Comparison of the Number of Patterns…………………………56
5-4 Pattern Analysis………………………………………………………… 58
Chapter 6 Conclusion……………………………………… 66
Reference…………………………………………………… 67
參考文獻 [1] Q. Liang, S. Miller and J. Chung, "Service Mining for Web Service Composition", by IEEE International Conference on Information Reuse and Integration (IEEE IRI-2005), Las Vegas, Nevada, USA, 2005.
[2] http://www.w3.org/TR/wsdl
[3] http://www.uddi.org/
[4] http://www.w3.org/TR/soap
[5] http://www.w3.org/2001/sw
[6] Meng-Feng Tsai and Yi-Ming Lee, "Mining Self-derivable Multilevel FP-tree From a Transactional Database", National Central University, Taiwan, Master Thesis, 2006.
[7] Lu, Yi., Ezeife, C.I., "Position Coded Pre-Order Linked WAP-Tree for Web Log Sequential Pattern Mining, " by Proceedings of The 7th Pacific- Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2003), Seoul, Korea, 2003.
[8] R.Agrawal, D.Gunopulos, and F.Leymann, "Mining process models from workflow logs," by Proc of 6th international Conference on Extending Database Technology, pages 469-483, 1998.
[9] Wil van der Aalst, Ton Weijters, and Laura Maruster, "Workflow Mining: Discovering Process Models from Event Logs," IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128-1142, Sept. 2004. - 67 -
[10] Ricardo Silva, Jiji Zhang and James G.Shanahan, "Probabilistic Workflow Mining," Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (KDD '05), Chicago, Illinois, USA, 2005.
[11] Sami Bhiri, Olivier Perrin and Claude Godart, "Extending workflow patterns with transactional dependencies to define reliable composite Web services," Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services, 2006.
[12] Robert Gombotz and Schahram Dustdar, "On Web Services Workflow Mining," BPM2005 Workshops, LNCS 3812, 2005.
[13] Mobasher B., Honghua Dai, Tao Luo, and Nakagawa M., "Using sequential and non-sequential patterns in predictive Web usage mining tasks, " by Proceedings of the IEEE International Conference on Data Mining (ICDM'02), Maebashi City, Japan, December 2002.
[14] M. Hogo, M. Snorek, P. Lingras, "Temporal Cluster Migration Matrices for Web Usage Mining," by Proceedings of 2004 IEEE/WIC International Conference on Web Intelligence, WI2004, Beijing, China, 2004.
[15] F. Masseglia, D. Tanasa, B. Trouses, "Web Usage Mining: Sequential Pattern Extraction with a Very Low Support," by Proceedings of the 6th Asia-Pacific Web Conference, Hangzhou, China, 2004.
- 68 -
[16] Q. Liang, J. Chung, S. Miller, O. Yang, "Service Pattern Discovery of Web Service Mining in Web Service Registry-Repository," by Proc. IEEE International Conference on E-Business Engineering, Shanghai China, 2006.
[17] http://ws.apache.org/axis/
[18] http://www.opentravel.org/
[19] Jiawei H., Yongjian F., "Discovery of Multiple-Level Association Rules from Large Databases, " by Proc. of 1995 Int'l Conf. on Very Large Data Bases (VLDB'95).
[20] Agrawal R.and Srikant R., "Fast algorithm for mining association rules, " by Proc. of 1994 Int. Conf.on Very Large Data Bases (VLDB'94), pages 487-499, Santiago, Chile, Sept. 1994.
[21] Klemettinen M., Mannila H., Ronkainen P., Toivonen H., and Verkamo I., "Finding interesting rules from large sets of discovered association rules, " by Proc. 3rd Int. Conf. Information and Knowledge Management (CIKM'94), pages 401-408, Gaithersburg, MD, Nov. 1994.
[22] Han J., Pei J., and Yin Y., "Mining frequent patterns without candidate generation, “ by Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'00), pages 1-12, Dallas, TX, May 2000.
指導教授 蔡孟峰(Meng-Feng Tsai) 審核日期 2007-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明