以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數：9 、訪客IP：18.208.126.232

姓名楊智丞( Chih-Cheng Yang) 查詢紙本館藏 畢業系所通訊工程學系 論文名稱兩階層行動網路中基地台干擾管理之研究

(A study of femto base station interference management in 2-tier mobile networks)相關論文檔案[Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]

- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的，進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定，切勿任意重製、散佈、改作、轉貼、播送，以免觸法。

摘要(中)在兩階層式行動網路中，如何適當的將一個微型基地台使用者分配至一個微型基地台下以使達成干擾消除且最大化可達到的資料速率是一個很重要的研究。在本論文中，我們證明了解決此一問題為完全非多項式問題 (NP complete problem)。傳統上為解決此一問題，線性規劃 (linear programming) 常被採用以找出最佳解，然而線性規劃的方法將會比較耗時。因此，我們提出了一個智慧式微型基地台選擇演算法 (smart femto base station selection algorithm) ，在微型基地台使用最大傳送功率的前提下，透過適當的目標微型基地台之選擇達成干擾消除之目的。當微型基地台皆使用最大傳送功率卻無法找出干擾消除之解時，我們提出一個下行功率控制演算法 (downlink power control algorithm) 可使每個微型基地台根據所服務的微型基地台使用者調整傳送功率，藉此找出一個無干擾且可達到最大資料速率的拓樸。從模擬結果可以發現，使用智慧式微型基地台選擇演算法或是下行功率控制演算法可以較低的時間複雜度即可找出干擾消除且資料速率較高之拓樸。

再者，微型基地台的訊號也有可能會穿過牆壁對巨型基地台使用者造成同頻干擾。為了兼顧提高室內傳輸速率且不影響巨型基地台的服務品質 (quality of service) 的前提下，我們提出一個微型基地台傳送功率調整演算法 (femto base station adjustment algorithm) 使微型基地台可根據附近的巨型基地台使用者之相對位置調整其傳送功率。由模擬結果可以發現微型基地台傳送功率調整演算法可透過傳送功率之控制減少對巨型基地台使用者之干擾，進而大幅降低巨型基地台使用者之失效率 (outage probability)。同時，傳送功率調整演算法不僅可保證巨型基地台使用者的服務品質，也不會因為調整傳送功率而大幅減低微型基地台使用者的資料速率。摘要(英)How to associate a femto user (FU) to an appropriate femto base station (FBS) to avoid interference and maximize the achievable data rate (ADR) of FUs have attracted much more attention in 2-tier mobile networks. The evidence provided in this dissertation proves it as an NP-complete problem. To maximize the ADR of the FUs, the methods for assigning FUs to neighboring FBSs are examined to determine the required transmit power level adjustments for the FBSs to mitigate the downlink (DL) interference among the FBSs and the macro base station (MBS). Traditionally, the linear programming (LP) approach is adopted to obtain the optimal solution for this problem but requires substantially more time to obtain the solution. To improve the drawback, we propose an easy but smarter scheme, named smart FBS selection algorithm (SFSA), to distribute FUs to non-interfered FBSs as well as to obtain the maximal ADR for each FU. If the SFSA fails to solve this problem, a DL power-control algorithm (DPCA) is employed to find a solution that causes the least amount of interference. The simulation results show that the SFSA and DPCA require only a minor amount of computation time to obtain a feasible solution.

Then, this dissertation investigates how to adjust the transmit power of each FBS to mitigate interference problems between the FBSs and mobile users (MUs). A common baseline of deploying the FBS to increase the indoor access bandwidth requires that the FBS operation will not affect outdoor MUs operation with their quality-of-service (QoS) requirements. To tackle this technical problem, an FBS transmit power adjustment (FTPA) algorithm is proposed to adjust the FBS transmit power (FTP) to avoid unwanted co-channel interference (CCI) with the neighboring MUs in downlink transmission. FTPA reduces the FTP to serve its FUs according to the QoS requirements of the nearest neighboring MUs to the FBS so that the MU QoS requirement is guaranteed. Simulation results demonstrate that FTPA can achieve a low MU outage probability as well as serve FUs without violating the MU QoS requirements.關鍵字(中)★ 微型基地台

★ 干擾管理

★ 服務品質

★ 二分圖

★ 功率控制

★ 站台選擇關鍵字(英)★ femto base station

★ interference management

★ Quality of service

★ bipartite graph

★ power control

★ cell selection論文目次Contents

English Abstract i

Chinese Abstract ii

Acknowledgements iii

List of Tables vi

List of Figures vii

List of Abbreviations ix

1 Introduction 1

1.1 Introduction of FBSs 1

1.2 Technical Challenges of FBS Deployment . 3

1.2.1 Time Synchronization . 3

1.2.2 Cell Association 4

1.2.3 Interference Management . 5

1.2.4 Self-organization Network (SON) . 7

1.3 Centralized or Distributed Mechanism . 8

1.4 Motivation and Topics to be Addressed . 10

1.4.1 Downlink Femtocell Interference Mitigation for FUs . 11

1.4.2 Downlink Femtocell Interference Mitigation for MUs . 12

2 Downlink Femtocell Interference Mitigation for Femto Users 13

2.1 System Model 13

2.2 The Smart FBS Selection Algorithm 19

2.3 The Downlink Power Control Algorithm 24

2.4 FBS Operating Information . 29

2.5 Simulation Results . 30

2.6 Summary 41

3 Downlink Femtocell Interference Mitigation for Mobile Users with QoS

Guarantee 43

3.1 QoS Requirement 43

3.2 System Model 44

3.2.1 Path Loss 45

3.2.2 Power Adjustment . 47

3.3 FTP Adjustment Algorithm . 49

3.3.1 Outage Probability of MU . 49

3.3.2 FTPA with Location Information 50

3.4 Simulation Results . 52

3.5 Summary 61

4 Conclusion and FutureWork 62

4.1 Contributions 62

4.2 Future Works 64

4.2.1 Distributed Power Control Algorithm . 64

4.2.2 MU QoS Requirement Guarantee with Resource Scheduling . 64

4.2.3 Opportunity Channel Access Scheme for CSG FBS 64

Bibliography 66參考文獻Labs Techincal Journal, vol. 13, no. 1. pp. 221–245, May 2008.

[10]S. Saunders, S. Carlaw, A. Giustina, R. R. Bhat, V. S. Rao, and R. Siegberg, Fem?tocells: Opportunities and Challenges for Business and Technology, Wiley, New York, June 2006.

[11] J. Zhang and G. dela Roche, ”Femtocells: Technologies and Deployment,” Wiley, New York, December 2009.

[12] J. Liu, T. Kou, Q. Chen, and H. D. Sherali, ”Femtocell Base Station Deployment in Commercial Buildings: A Global Optimization Approach,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 652–633, April 2012.

[13] D. Calin, H. Claussen, and H. Uzunalioglu, ”On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments,” IEEE Com?mun. Mag., vol. 48, no. 1, pp. 26–32, January 2010.

[14] C. B. Sankaran, ”Data offloading techniques 3GPP Rel-10 networks: A tutorial,” IEEE Commun. Mag., vol. 50, no. 6, pp. 46–53, June 2010.

[15] IEEE 802.16 WG, “IEEE Standard for Local and Metropolitan Area Networks– Part 16: Air Interface for Broadband Wireless Access Systems, Amendment 3,” IEEE Std. 802.16m–2011, May 2011.

[16] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Uni?versal Terrestrial Radio Access Network (E-UTRAN): Overall Description, Stage 2,” 3GPP TS 36.300 V11.4.0, Release 11, September 2013.

[17] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Uni?versal Terrestrial Radio Access Network (E-UTRAN): Overall Description, Stage 2,” 3GPP TS 36.300 V11.4.0, Release 10, September 2013.

[18] P. Bhat, S. Nagata, L. Campoy, I. Berberana, T. Derham, G. Liu, X. Shen, P. Zong, and J. Yang, ”LTE-advanced: an operator perspective,” IEEE Commun. Mag., vol. 50, no. 2, pp. 104–114, February 2010.

[19] J. Hoydis, M.Kobayashi, and M. Debbah, “A Cost-and Energy-Effcient Way of Meeting the Future Traffic Demands,” IEEE Veh. Technol. Mag., vol. 6, no. 1, pp. 37–43, March 2011.

[20] T. Zahir, K. Arshad, A. Nakata, and K. Moessner, “Interference Management in Femtocells,” IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 293– 311, January 2013.

[21] Aircent, “Challenges in Deployment of UMTS/HSPA Femtocell,” February 2008.

[22] H. Li, X. Xu, D. Hu, X. Tao, P. Zhang, S. Ci, and H. Tang, “Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System,” J. Commun. Networks, vol. 13, no. 6, pp. 664–677, December 2011.

[23] A. Ghosh, et al., “Heterogeneous Cellular Networks: From Theory to Practice,” IEEE Commun. Mag., vol. 50, no. 6, pp. 54–64, March 2012.

[24] Y.-L. Tseng and C.-Y. Huang, “Analysis of Femto Base Station Network Deploy?ment,” IEEE Trans. Veh. Technol., vol. 61, no. 2, pp. 748–757, February 2012.

[25] S. Altug, “Femtocell Local Timing Reference Challenges,” Small cell Forum, March 2010.

[26] Small Cell Forum, “Femtocell Synchronization and Location,” Small cell Forum, May 2012.

[27] K. M. Pesyna, K. D. Wesson, R. W. Heath, T. E. Humphreys, “Extending the Reach of GPS-assisted Femtocell Synchronization and Localization through Tightly-Coupled Opportunistic Navigation,” in Proc. of IEEE GLOBECOM 2011, pp. 242–247, Houston, Texas USA, December 2011.

[28] C. J. Hegarty and E. Chatre, “Evolution of the Global Navigation Satellite System (GNSS),” Proc. IEEE, vol. 96, no. 12, pp. 1902–1917 December 2008.

[29] N. Jardak and N. Samama, “Indoor Positioning Based on GPS-Repeaters: Perfor?mance Enhancement using an Open Code Loop Architecture,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 1, pp. 347–359, January 2009.

[30] IEEE 1588, “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,” IEEE Std 1588-2008, July 2008.

[31]P. Amin and O. Tirkkonen, “Network listening based synchronization techniques for femtocell systems,” in Proc. of PIMRC 2011, pp. 1–5, Toronto, Canada, September 2011.

[32] G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, S. Vrzic, ”Interference Coordination and Cancellation for 4G Networks,” IEEE Commun. Mag., vol. 47, no. 4, pp. 74–81, April 2009.

[33] 3GPP, “Technical Specification Group Radio Access Networks; 3G Home NodeB Study Item Technical Report,” 3GPP TR 25.820 V8.2.0, Release 8, September 2008.

[34] J.-H. Yun and K.-G. Shin, “Adaptive Interference Management of OFDMA Fem?tocells for Co-Channel Deployment,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1225–1241, January 2011.

[35] M.-R. Jeong, F. Watanabe, and H. Inamura, “A Hybrid Frequency Assignment for Femtocells and Coverage Area Analysis for Co-channel Operation,” IEEE Com?mun. Lett., vol. 12, no. 12, pp. 880–882, December 2008.

[36] D.-C. Oh, H.-C. Lee, andY.-H. Lee, “Power Control and Beamforming for Femto?cells in the Presence of Channel Uncertainty,” IEEETrans.Veh.Technol., vol. 60, no. 6, pp. 2545–2554, July 2011.

[37] M. R. Mili and K. A. Hamdi, “On the Minimum Transmit Power in Cochannel Femtocells,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1026–1029, July 2012.

[38] J. Fan, Z. Rong, and H. Lajos, “Fractional Frequency Reuse Aided Twin-Layer Femtocell Networks: Analysis, Design and Optimization,” IEEE Trans. Commun., vol. 61, no. 5, pp. 2074–2085, May 2013.

[39] H.-S. Jo, C. Mun, J. Moon, and J.-G. Yook, “Self-Optimized Coverage Coordi?nation in Femtocell Networks,” IEEE Trans. Wirel. Commun., vol. 9, no. 10, pp. 2977–2982, January 2010.

[40] R. Zhang and L. Hanzo, “Fractional Frequency Reuse Aided Twin-Layer Femtocell Networks: Analysis, Design, and Optimization,” IEEE Trans. Commun., no. 99, pp. 1–2, December 2013.

[41] P. Xu, X. Fang, M. Chenc, and Y. Xu., “A Stackelberg Game-based Spectrum Allo?cation Scheme in Macro/Femtocell Hierarchical Networks,” Computer Commun., Octobor 2012. http://dx.doi.org/10.1016/j.comcom.2012.10.002.

[42] Y.-J. Chen, J. Zhang, and Q. Zhang, “Utility-Aware Refunding Framework for Hy?brid Access Femtocell Network,” IEEE Wirel. Commun., vol. 11, no. 5, pp. 1688– 1697, May 2012.

[43] F. Pantisano, M. Bennis, W. Saad, M. Debbah, and M. Latva-aho, ”Interference Alignment for Cooperative Femtocell Networks: A Game-Theoretic Approach,” IEEE Trans. Mobile Comput., vol. 12, no. 11, pp. 2233–2246, November 2013.

[44] O. N. Gharehshiran, A. Attar, and V. Krishnamurthy, “Collaborative Sub-Channel Allocation in Cognitive LTE Femto-Cells: A Cooperative Game-Theoretic Ap?proach,” IEEE Trans. Commun., vol. 61, no. 1, pp. 325–334, January 2013.

[45] S.-M. Cheng, W.-C. Ao, F.-M. Tseng, and K.-C. Chen, “Design and Analysis of Downlink Spectrum SharinginTwo-Tier CognitiveFemto Networks,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2194–2207, June 2012.

[46] W. Wang, G. Yu, and A. Huang, “Cognitive radio enhanced interference coordina?tion for femtocell networks,” IEEE Commun. Mag., vol. 51, no. 6, pp. 37–43, June 2013.

[47] Y. S. Soh, T. Q. S. Quek, M. Kountouris, and G. Caire, “Cognitive Hybrid Division Duplex for Two-Tier Femtocell Networks,” IEEE Trans. Wireless Commun., vol. 12, no. 10, pp. 4852–4865, Octobor 2013.

[48] R. Xie, F. R. Yu, H. Ji, and Y. Li, “Energy-Efficient Resource Allocation for Hetero?geneous Cognitive Radio Networks with Femtocells,” IEEE Trans.Wireless Com?mun., vol. 11, no. 11, pp. 3910–3920, November 2012.

[49] S.-J. Kim and I. Cho, “Graph-Based Dynamic Channel Assignment Scheme for Femtocell Networks,” IEEE Commun. Lett.,vol.17, no.9,pp. 1718-1721, Septem?ber 2012.

[50] C.-C. Wang, T. Quek, and M. Kountouris, “Throughput Optimization, Spectrum Allocation, and Access Control in Two-Tier Femtocell Networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 561–571, April 2012.

[51] R. Madan, J. Borran, S. Ashwin, N. Bhushan, A. Khandekar, and T. Ji, “Cell As?sociation and Interference Coordination in Heterogeneous LTE-A Cellular Net?works,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1479–1489, December 2010.

[52] Y.-S. Liang, W.-H. Chung, G.-K. Ni, I.-Y. Chen, H. Zhang and Sy-Yen Kuo, “Re?source Allocation with Interference Avoidance in OFDMA Femtocell Networks,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2243–2255, June 2012.

[53] M.Y. Arslan, J. Yoon, K. Sundaresan, S.V. Krishnamurthy, and S. Banerjee, “A Resource Management System for Interference Mitigation in Enterprise OFDMA Femtocells,” IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1447–1460, Octobor 2013.

[54] K. Lee, O. Jo, and D.-H. Cho, “Cooperative Resource Allocation for Guaranteeing IntercellFairnessin Femtocell Networks,” IEEE Commun. Lett., vol. 15, no. 2, pp. 214–216, February 2011.

[55] S. Mukherjee, “Distribution of Downlink SINR in Heterogeneous Cellular Net?works,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 575–585, April 2012.

[56] H.-S. Jo, Y. J. Sang, P. Xing, and J. G. Andrews, “Heterogeneous Cellular Net?works with Flexible Cell Association: A Comprehensive Downlink SINR Anal?ysis,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3484–3495, October 2012.

[57] R. Razavi, H. Claussen, “Self-configuring Switched Multi-Element Antenna sys?tem for interference mitigation in femtocell networks,” in Proc. of PIMRC 2011, pp. 237–242,Toronto, Canada, September 2011.

[58] K. Lee, H. Lee and D.-H. Cho, “Collaborative Resource Allocation for Self-Healing in Self-Organizing Networks,” in Proc. of IEEE ICC 2011, pp. 1–5,Kyoto, Japan, June 2011.

[59] S. Akbarzadeh, R. Combes, and Z. Altman, “Network Capacity Enhancement of OFDMA System using Self-organized femtocell Off-load,” in Proc. of IEEE WCNC 2012, pp. 1234–1238, Shanghai, China, April 2012.

[60] W. Wang, J. Zhang, and Q. Zhang, “Cooperative cell outage detection in Self-Organizing femtocell networks,” in Proc. of IEEE INFOCOM 2013,pp. 1–5,Turin, Italy, June 2013.

[61] N. Arulselvan, V. Ramachandran, S. Kalyanasundaram, and H. Guang, “Dis?tributed Power Control Mechanisms for HSDPA Femtocells,” in Proc. IEEE VTC 2009, pp. 1–5, Hilton Diagonal Mar, Barcelona, Spain., April 2009.

[62] Z.-L. Huang, Z.-M. Zeng, H.-L. Xia, and J.-F. Shi, “Power Control in Two-Tier OFDMA Femtocell Networks with Particle Swarm Optimization,” in Proc. IEEE VTC 2010-Spring, pp. 1–5, Budapest, Hungary, May 2010.

[63] E.-J. Hong, S.-Y.Yun, and D.-H. Cho, “Decentralized Power Control Scheme in Femtocell Networks: A Game Theoretic Approach,” in Proc. IEEE PIMRC 2009, pp. 415–419,Tokyo, Japan, September 2009.

[64] H.-S. Jo, C. Mun, J. Moon, and J.-G. Yook, “Self-Optimized Coverage Coordi?nation in Femtocell Networks,” IEEE Trans. Wirel. Commun., vol. 9, no. 10, pp. 2977–2982, January 2010.

[65]V. Chandrasekhar, J. G. Andrews, T. Muharemovic, S. Zukang, and A. Gatherer, “Power Control in Two-Tier Femtocell Networks,” IEEE Trans. Wirel. Commun., vol. 8, no. 8, pp. 4316–4328, August 2009.

[66] S.-P.Yeh, S.Talwar, N. Himayat, and K. Johnsson, “Power Control Based Inter?ference Mitigation in Multi-Tier Networks,” in Proc. IEEE Globecom 2010, pp. 701–705, Miami, FL, December 2010.

[67] J. Xiang, Y. Zhang, T. Skeie, and L. Xie, “Downlink Spectrum Sharing for Cogni?tive Radio Femtocell Networks,” IEEE Syst. J., vol. 4, no. 4, pp. 524–534, Decem?ber 2011.

[68] J. Andrews and A. Gatherer, “Femtocell Networks: A Survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67, September 2008.

[69] B. Olivier, C. Larry, F. Jeanne, L. Arnaud, M. Loris, and R. Yves, ”Centralized versus Distributed Schedulers for Bag-of-Tasks Applications,” IEEE Trans .Paral?lel Distrib. Syst., vol. 19, no. 5, pp.698–709, May 2008.

[70] J. Blackford, H. Kirksey, and W. Lupton, “TR-069 Amendment3,CPEWANMan?agement Protocol,” Broadband Forum Technical Report, no. 1, November 2010.

[71] T. Yoshizawa, J. Blackford, and H. Kirksey, “TR-196, Femto Access Point Service Data Model,” Broadband Forum Technical Report, no. 1, April 2009.

[72] 3GPP, “Procedure Flows forType1Interface HNB to HNB Management System (HMS),” 3GPP TS 32.583 V10.2.0, Release 10, Septemper 2011.

[73] R. D. Yates and C.-Y. Y. Huang, “Integrated Power Control and Base Station As?signment,” IEEE Trans. Veh. Technol., vol. 44, no. 3, pp. 638–644, August 1995.

[74] A.T. Hoang andY.-C. Liang, “Downlink Channel Assignment and Power Control for Cognitive Radio Networks,” IEEE Trans. Wirel. Commun., vol. 7, no. 8, pp. 3106–3117, August 2008.

[75] N. Saquib, E. Hossain, L. B. Le, and D. I. Kim, “Interference Management in OFDMA Femtocell Networks: Issues and Approaches,” IEEE Wirel. Commun., vol. 19, no. 3, pp. 86–95, June 2012.

[76] C. Zhao, M. Zou, B. Shen, B. Kim, and Kyungsup Kwak, “Cooperative Spectrum Allocation in Centralized Cognitive Networks Using Bipartite Matching,” in Proc. IEEE Globecom, pp. 1–6, New Orleans, LA, September 2008.

[77] M.-R. Garey and D.-S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness, W.H. Freeman & Co , New York, 1990.

[78] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edt., Wiley, NewYork, July 2006.

[79] M. Y. Arslan, J. Yoon, K. Sundaresan, S. V. Krishnamurthy, and S. Banerjee, “FERMI: A Femtocell Resource Management System for Interference Mitigation in OFDMA Networks,” in Proc. ACM MobiCom’11, pp. 25–36, Las Vegas, NV, September 2011.

[80] J. Zhuang, L. Jalloul, R. Novak, and J. Park, “IEEE 802.16m Evaluation Method?ology Document (EMD),” IEEE 802.16m-08/004r5, January 2009.

[81] K. Das and S. D. Morgera, “Interference and SIR in Integrated Voice/Data Wireless DS-CDMA Networks—A Simulation Study,” IEEE J. Sel. Areas Commun.,vol. 15, no. 8, pp. 1527–1538, Octobor 1997.

[82] I. F. Akyildiz, D. A. Levine, and I. Joe, “A Slotted CDMA Protocol with BER Scheduling for Wireless Multimedia Networks,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 146–158, April 1999.

[83] X. Wang, “Wide-Band TD-CDMA MAC With Minimum-Power Allocation and Rate-and BER-Scheduling for Wireless Multimedia Networks,” IEEE/ACM Trans. Netw., vol. 12, no. 1, pp. 103–116, February 2004.

[84] M. Luo, G. Villemaud, J.-M. Gorce, and J. Zhang, “Realistic Prediction of BER and AMC for Indoor Wireless Transmissions,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1084–1087, 2012

[85] A. Mercado and K. J. R. Liu “Adaptive QoS for Wireless Multimedia Networks Using Power Control and Smart Antennas,” IEEE Trans.Veh.Technol., vol. 51, no. 5, pp. 1223–1233, September 2002.

[86] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Stochastic Geometry and Random Graphs for the Analysis and Design of Wireless Networks,” IEEE J. Sel. Areas Commun.,vol.27, no.7,pp. 1029–1046, September 2009.

[87] M. Haenggi, “On Distances in Uniformly Random Networks,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3584-3586, October 2005.

[88] ITU-R Rec M.1225: “Guidelines for Evaluation of Radio Transmission Technolo?gies for IMT-2000,” ITU-R Rec M.1225, February 1997.

[89] V. Mordachev and S. Loyka, “On Node Density Outage Probability Tradeoff in Wireless Networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1120-1131, September 2009.

[90] S. H. Ali, K.-D. Lee, and V. C. M. Leung, “Dynamic Resource Allocation in OFDMA Wireless Metropolitan Area Networks,” IEEE Wirel. Commun., vol. 14, no. 1, pp. 6–13, February 2007.指導教授許獻聰、陳仁暉

(Shiann-Tsong Sheu、Jenhui Chen)審核日期2014-1-22 推文facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤Google bookmarks del.icio.us hemidemi myshare