博碩士論文 945301025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.118.1.232
姓名 詹益欣(Yi-Hsin Chan)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 微波輸出窗電性匹配之研究
(Study on Impedance Match for Microwave Output Window)
相關論文
★ 獨立成份分析法於真實環境中聲音訊號分離之探討★ 口腔核磁共振影像的分割與三維灰階值內插
★ 數位式氣喘尖峰氣流量監測系統設計★ 結合人工電子耳與助聽器對中文語音辨識率的影響
★ 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析★ 中文發聲之神經關聯性的腦功能磁振造影研究
★ 利用有限元素法建構3維的舌頭力學模型★ 以磁振造影為基礎的立體舌頭圖譜之建構
★ 腎小管之草酸鈣濃度變化與草酸鈣結石關係之模擬研究★ 口腔磁振影像舌頭構造之自動分割
★ 以軟體為基準的助聽器模擬平台之發展-噪音消除★ 以軟體為基準的助聽器模擬平台之發展-回饋音消除
★ 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響★ 用類神經網路研究中文語音聲調產生之神經關聯性
★ 教學用電腦模擬生理系統之建構★ 以軟體為基準的助聽器模擬平台之發展-方向性麥克風
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微波輸出窗是微波管的關鍵組件之一,它的好壞直接影響著微波管的性能,甚至整管研製的成敗。因此,設計出低反射,能夠傳輸高功率的微波管輸出窗是一項重要工作。微波管所使用之輸出窗的形式是多樣的,目前用得比較普遍的是盒型窗,型態主要可分薄片陶瓷與二分之ㄧ導波長陶瓷兩種。當使用之微波波長進入毫米波的範圍時,薄片陶瓷盒型窗的陶瓷厚度變得更薄,設計與製造均很困難;而二分之ㄧ導波長陶瓷盒型窗有著容易產生電磁共振幽靈模式的缺點。
微波輸出窗還有波導半波窗的型態,只是較少關於它的研究,主要是因為製作困難,而且頻寬小於盒型窗。不過隨著科技的發展,製作不再是不可行,於是波導半波窗的研究便有其可行性。本研究將針對Ku與Ka頻段波導半波窗進行電性匹配優化,希望能獲得超過百分之二十之頻寬範圍,並消除電磁共振幽靈模式之現象。同時,藉此研究對波導半波窗的電磁場特性,能有更深入的了解,對以後的設計及製作能有效地節省時間與成本。
首先,利用等效電路的方法來研究波導半波窗之理論基礎,並藉由模型簡化的步驟,減少部分參數,在選定陶瓷介質與波導的頻段後,僅剩陶瓷厚度需要進行分析。
其次,我們利用基於有限元素法的電磁模擬軟體HFSS12進行數值模擬,先將Ku頻段盒型窗之模擬結果與文獻比對,確認模擬方法的正確性,之後再分別針對Ku與Ka頻段波導半波窗進行模擬分析,電性匹配經過優化後均可得到超過百分之二十之頻寬(RL>20dB之頻率範圍)。在陶瓷焊接邊角圓角化的分析,Ku與Ka頻段波導半波窗圓角半徑分別達到2mm與0.75mm才開始有些微的差異。另外,針對簡化模型理論分析之結果與模擬結果比對,兩者差異均不超過千分之二,準確度相當高。
最後在波導半波窗內電磁場分布的研究,因為它未產生電磁共振幽靈模式,使得陶瓷面的電場遠低於材料本身的介電強度,可以避免被微波擊穿的危險。
分析模擬結果,波導半波窗的頻寬與半波長陶瓷盒型窗相當甚至優於它,而且不會產生電磁共振幽靈模式,可以應用在毫米波領域的微波管,甚至波長更短的微波管。
摘要(英) Microwave output window is one of the key components of the microwave tubes. It has a direct impact on the performance of microwave tubes, or the success or failure for the development of the whole microwave tube. Therefore, design of an output window with low-reflection; high-power transmission is an important task in the development of microwave tubes. There are diverse forms of output window used in the microwave tubes. Currently, the most commonly used type is the pillbox-type window. The pillbox window is further divided into two main types of ceramics: thin slice and half-wavelength ceramic windows. When the use of microwave length is in the range of millimeter, the thickness of thin slice ceramic pillbox window becomes thinner. This makes the design and manufacture of the output window very difficult. In addition, the half-wavelength ceramic pillbox window also has the disadvantage of ghost mode resonance.
The half-wavelength ceramic waveguide window is another form of microwave output window and its related research is less found in the literature. The main reasons for this are that it is difficult to manufacture, and that its bandwidth is less than that of the pillbox window. With the development of technology, manufacture of the half-wavelength ceramic waveguide window is feasible and the study of half-wavelength ceramic waveguide window becomes possible. The main purpose of this study is to optimize impedance matching for Ku- and Ka-band half-wavelength ceramic waveguide window; that is to obtain a 20% increase in bandwidth and to eliminate the phenomenon of ghost mode resonance. In addition, our study will have a better understanding of the electromagnetic properties of the half-wavelength ceramic waveguide window to provide a time saving and cost effective way for future design and production.
We first applied the equivalent circuit model as theoretical basis to study the half-wavelength ceramic waveguide window and further simplified the model to reduce some parameters. At the end, we only need to analyze the ceramic thickness with the chosen ceramic material and waveguide operating bandwidth (Ku- or Ka-band).
Based on the finite element simulation (HFSS12, ANSYS, Inc., Canonsburg, PA, USA), we simulated the coefficients of reflection and transmission for the Ku-band pillbox window and compared our simulated results with the literature to verify the correctness of simulation methods. Then, simulation of the Ku and Ka-band half-wavelength ceramic waveguide window was implemented. After optimization of impedance matching, we could obtain a 20% increase in bandwidth corresponding to a return loss that is greater than 20 dB in the pass band. Regarding the fillet analysis in the ceramic welded edge of Ku- and Ka-band half-wavelength ceramic waveguide window, it began slightly different when the fillet radius was 2 mm and 0.75 mm, respectively. In addition, we compared our simulated results with the results of theoretical analysis for the simplified model; the difference did not exceed 0.2%, which is quite accurate.
Finally, the study of the electromagnetic field distribution in the half-wavelength ceramic waveguide window was conducted. We found that it did not produce ghost mode resonance because the electric field of the ceramic surface is far below the dielectric strength of the material itself. This could avoid the risk of breakdown caused by the microwave.
In summary, our simulated results showed the bandwidth of the half-wavelength ceramic waveguide window is equal or even superior to that of the half-wavelength ceramic pillbox window. The half-wavelength ceramic waveguide window did not induce the ghost mode resonance and could be applied to the microwave tubes with millimeter or even shorter wavelength.
關鍵字(中) ★ 微波輸出窗
★ Ka頻段
★ Ku頻段
★ 波導半波窗
★ 盒型窗
關鍵字(英) ★ Half-Wavelength Ceramic Waveguide Window
★ Microwave Output Window
★ Ku-Band
★ Ka-Band
★ Pillbox-Type Window
論文目次 摘要i
Abstractiii
誌謝v
目錄vi
圖目錄vii
表目錄x
第一章 簡介1
1.1 前言 1
1.2 研究動機5
1.3 論文架構7
第二章 微波輸出窗理論研究9
2.1 輸出窗等效電路理論探討 9
2.1.1 傳輸線參數9
2.1.2 雙埠網路11
2.1.3 波導半波窗等效電路分析14
2.2 陶瓷尺寸選擇24
2.2.1 陶瓷材料分析 24
2.2.2 陶瓷尺寸設計 26
第三章 微波輸出窗模型建構與模擬32
3.1 HFSS模擬軟體簡介32
3.2 Ku頻段盒型窗模型建構與模擬35
3.3 Ku頻段波導半波窗模型建構與模擬40
3.4 Ka頻段波導半波窗模型建構與模擬43
第四章 模擬結果分析與討論47
4.1 Ku頻段盒型窗模擬結果分析與討論47
4.2 Ku頻段波導半波窗模擬結果分析與討論52
4.3 Ka頻段波導半波窗模擬結果分析與討論64
第五章 結論與未來展望79
5.1 結論 79
5.2 未來展望80
參考文獻 82
參考文獻 參考文獻
H. Arai, N. Goto, Y. Ikeda and T. Imai, , “An Analysis of a Vacuum Window for Lower Hybrid Heating”, IEEE Transactions On Plasma Science, Vol.14, No.6, pp.947-954, December 1986.
R.W. Bierce, W.R. Fowkes and J.H. Jasberg, “Window Materials Design and Properties for Use in High Power Klystrons”, IEEE Trans. Nuclear Science, Vol.12, pp.180-184, March 1965.
N.C. Chauhan, T. Hays, J. Kirchgessner, H. Padamsee, M. Cole and T. Schultheiss, “CAD of RF Windows Using Multiobjective Particle Swarm Optimization”, IEEE Transactions on Plasma Science, Vol.37, No.6, pp.1104-1109, June 2009.
E. Chojnacki, et al., “Design of A High Average-Power Waveguide Window”, Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997.
M.P. Forrer, and E.T. Jaynes, “Resonant Modes in Waveguide Windows”, IRE Transactions on Microwave Theory Tech., pp.147-150, March 1960.
A.V. Gaponov-Grekhov and V.L. Granatstein (Eds.), Application of High Power Microwaves, Artech House, Norwood, MA, 1994.
A.S. Gilmour, Jr., Microwave Tubes, Artech House, Norwood, MA, 1986.
A.S. Gilmour, Jr., Principles of Traveling Wave Tubes, Artech House, Norwood, MA, 1994.
K.C. Gupta, R. Garg, R. Chadha, Computer-Aided Design of Microwave Circuits, Artech House, Inc., Dedham, MA, 1981.
D. Hemmert, A.A. Neuber, J. Dickens, H. Krompholz, L.L. Hatfield, M. Kristiansen, “Microwave Magnetic Field Effects on High-Power Microwave Window Breakdown”, IEEE Transactions on Plasma Science, Vol.28, No.3, pp.472-477, June 2000.
Y. Ikeda, T. Imai, K. Sakamoto, “Discharge at the Pillbox Window for an LHRF Launcher”, IEEE Transactions on Plasma Science, Vol.17, No.3, pp.766-773, June 1989.
H.C. Kim, J.P. Verboncoeur, Y.Y. Lau, “Modeling RF Window Breakdown from Vacuum Multipactor to RF Plasma”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol.14, No.4, pp. 766-773, August 2007.
O.S. Lamba, D. Pal, D. Kant, T. Giri, M.K. Verma, S.C. Nangru, L.M. Joshi, “Design and Optimization of Asymmetric RF Window for 6 MW Pulse Power S-band Klystron”, International Conference on Recent Advances in Microwave Theory and Applications, pp.44-46, 2008.
M.C. Lin and D.S. Chuu, “A Novel Wide-Band High-Transmission Window for High-Frequency Microwave Tubes”, Third IEEE International Vacuum Electronics Conference (IVEC), pp.216-217, 2002.
S. Liu, “A Fast Computational Technique for RF Window in Millimeter Wave Tubes”, International Journal of Infrared and Millimeter Waves, Vol.15, No.5, pp.857-860, 1994.
S. Michizono, “Secondary Electron Emission from Alumina RF Windows”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol.14, No.3, pp.583-592, June 2007.
H. Nakatsuka, N. Yoshida, I. Fukai, “Three-Dimensional Analysis of a Vacuum Window Connected to Waveguide”, IEEE Transactions on Plasma Science, Vol.16, No.4, pp.947-954, August 1988.
A. Neuber, J. Dickens, D. Hemmert, H. Krompholz, L.L. Hatfield, M. Kristiansen, “Window and Cavity Breakdown Caused by High Power Microwaves”, 11th IEEE International Pulsed Power Conference, Digest of Technical Papers, pp.472-477, 1997.
A. Neuber, J. Dickens, D. Hemmert, H. Krompholz, L.L. Hatfield, M. Kristiansen, “Window Breakdown Caused by High-Power Microwaves”, IEEE Transactions on Plasma Science, Vol.26, No.3, pp.296-303, June 1998.
D.M. Pozar, Microwave Engineering, 2nd, John Wiley& Sons, Inc., New York, 1998.
D.H. Preist, and R.C. Talcott, “On the Heating of Output Windows of Microwave Tubes by Electron Bombardment”, IRE Transactions on Electron Devices, Vol.8, pp.243-251, July 1961.
B. Prokofiev, “Broadband Pillbox-Type Windows for the Microwave Tubes”, Third IEEE International Vacuum Electronics Conference (IVEC), pp.222-223, 2002.
J.X. Qiu, B. Levush, J. Pasour, A. Katz, C.M. Armstrong, D.R. Whaley, J. Tucek, K. Kreischer and D. Gallagher, “Vacuum Tube Amplifiers”, IEEE Microwave Magazine, Vol.10, pp.38-51, December 2009.
Y. Saito, “Surface Breakdown Phenomena in Alumina RF windows”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol.2, No.2, pp.243-250, April 1995.
A. Staprans, E.W. McCune, and J.A. Ruetz, “High-Power Linear-Beam Tubes”, Proc. IEEE, Vol.61, pp.299-330, 1973.
R.S. Symons, M. Park and A.E. Schoennauer, “Sealed Waveguide Window”, U.S. Patent 2958834, assigned to Varian Associates by R. S. Symons, 1960.
J.R.M. Vaughan, “Some High-Power Window Failures”, IRE Transactions on Electron Devices, Vol.8, pp.302-308, July 1961.
X. Yong, L. Yong, L. Hongfu, Y. Sheng, X. Caidong and W. Jianxun, “RF Windows Of Low Reflectivity And Absorption For High Average Power Gyroklystrons”, 15th International Conference on Terahertz Electronics Infrared and Millimeter Waves, pp.698-699, 2007.
F. Zhu, Z.C. Zhang, J.R. Luo and Y.W. Zhang, “Investigation of the Failure Mechanism for an S-Band Pillbox Output Window Applied in High-Average-Power Klystrons”, IEEE Transactions On Electron Devices, Vol.57, No.4, pp.946-951, April 2010.
胡玉民、馬欣、張榮華, 「微波矩形陶瓷密封窗」, 原子能科學技術, 第二十八卷第五期, 471~474頁, 1994年9月。
姜惟元, 「Ka頻段高工作比分布作用放大器之研究與應用」, 國立清華大學, 博士論文, 民國97年7月8日。
曹明雄、陳漢穎、陳麗明、朱國瑞、楊慶源, 「盒型微波窗之理論與實驗探討」, 科學發展月刊, 第二十七卷第十二期, 1411~1420頁, 民國88年12月。
張新仁, 「3mm波段回旋管高頻窗的研究」, 電子科技大學, 碩士論文, 2008年4月。
張榮華, 「寬頻高功率矩形陶瓷密封窗封接結構及工藝」, 真空電子技術, 第3期, 46~50頁, 2002年。
電子管設計手冊編輯委員會, 大功率速調管設計手冊, 國防工業出版社, 1979年。
指導教授 吳炤民(Chao-Min Wu) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明