博碩士論文 945401012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.20.205.228
姓名 龔存雄(Cihun-Siyong Gong)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於植入式生醫電子微系統之高效能積體電路的設計與實現
(On the Design and Implementation of Efficient Integrated Circuits for Bioimplantable Electronic Microsystems)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於近十年來積體電路技術的快速發展,使得將有著大量電晶體數量的複雜訊號處理系統實現於單一晶片上變為可能,同時也開啟了重建人類失去的複雜感官之契機。 現今,諸如像耳蝸植入物此類的植入式晶片,已能用於重新取得絕大部份已失去的聽覺感官。 對視盲患者而言,視覺輔具已被視為是一種極具潛力的治癒方式。 然而,雖然此類輔具已於過去數十年間被廣泛研究,於實際應用前仍有許多尚待克服之瓶頸。 本論文旨在實現一可應用於視覺輔具之高效能系統。 然而雖然本文中所提出的設計主要係針對視覺輔具之應用,這些被提出的技術亦能輕易地被用於其它的輔具系統,而僅需少量的修改。
就論文的內容部份,吾人首先提出一應用於無線供電式系統之高效能鍵控移幅解調變器,其克服了諸多前人所提出架構之限制。 藉由一自取樣的概念,此調變器能同時兼具可操作於低調變索引與無電容電阻之優點。 經由實際透過0.18 微米金氧半製程進行實現,所提出的解調器僅具有32.3×14.5 um^2。 模擬與量測結果顯示所提出的解調器於電路本身特性上可於2 MHz 的載波情況下完成高達50%調變率的解調,功耗約為336 uW。 此外,結果亦顯示所提出的解調器可在低於5.5%的調變指標下正確解調。
接著,吾人提出一植基於絕熱切換之全積體化具能量感知之無線供電輔具系統架構。 所提出的架構當操作在2 MHz 的載波時其內建之模式I 可允許240 個刺激通道每秒執行240 次掃描(240 張影格),而在模式II 時的影格量更可達到模式I 可允許量的三倍之多,因而適合諸如視覺輔具這般須即時掃描的多通道輔具。 為能迎合在感知方面更高的空間解析度,此雛型系統已以16 通道為基礎之刺激概念進行設計進而使其能被拓展至各種不同的實驗需求。 經由透過0.18 微米製程進行實現,所提出的輔具系統相較於傳統設計架構可有效降低高達80%的解調誤碼率,並可同時節省約18%的外部發送平台電流消耗量。 然而本系統雖具有改善傳統(非使用能量回復式技術)架構之解調誤碼率與能量效益之優點,卻也造成其本身除解調器外的其它部份位元錯誤率升高之缺陷。 此誤碼率之上升主要係與所採用的能量回復技術於邏輯求值時所具有的死區有關。
針對此缺陷,吾人於文中第三個主要部份提出一新式不可逆能量回復式邏輯。 此新式能量回復邏輯承接了半靜態能量回復邏輯家族之優點,卻有著改善的驅動能力與電路強健度。 相較於半靜態能量回復邏輯,此新式能量回復式邏輯於相同操作條件下具有無"保持"相位之特色,因而毋需半靜態能量回復邏輯家族所須之回授保持電路。 這樣的特色使其在整體面積與功耗上均獲得顯著提升。 此外,當以相同的功率時脈頻率進行測試時,所提出之新式不可逆能量回復式邏輯的運作(吞吐)量可達半靜態能量回復邏輯之兩倍。 吾人亦於文中對所提出之邏輯類型與其他可達相似效能之邏輯類型(次臨限邏輯)進行比較。 為證實此新式邏輯之可使用性,一個以所提出的邏輯類型所設計之八位元移位暫存器已使用0.18 微米製程進行實現。 模擬與量測結果均證實所提出邏輯之功能與其優越性,意昧著所提出的邏輯可用於實現高效能具能量感知之超大型積體電路系統以及去改善吾人所提出的輔具系統之缺陷。
在文中的最後部份,吾人論及兩個可用於更進一部提升系統效能之技術。 在此部份首先談到的為一以低功耗、低成本,與真正低複雜度實現為特色之新式鍵控移相解調器。 藉著結合資料之無線供電式傳輸所具有之高訊雜比之優勢,本架構可在不需要複雜須鎖相迴路之載波回復電路之情況下完成鍵控移相訊號之解調。 經由以0.18 微米製程進行設計實現,所提出的鍵控移相解調器可在以真實無線聯結平臺進行測試的情況下完成800 Kbps 的數據解調,而僅耗費低於59 uW。 此部份第二個主軸便是提出一全積體化低損耗金氧半整流器。 藉由使用達成幾乎理想切換之高效能主動二極體,當以0.18微米製程完成設計製造並以真實的無線聯結平臺進行驗證,所提出的架構可在不需任何特殊元件製程的情況下,達成超過90%的最大轉換效能。 與所提出之輔具系統相關的設計考量以及系統中所須用到的每個核心技術都將於本文中詳細闡述。
摘要(英) Thanks to the rapid advance in the technologies of integrated circuit (IC) during the last ten years, it is possible to realize a complex signal process system with large number of transistors in a single microchip, which creates the possibility of reconstructing lost sophisticated human sensations. Today, implantable chips, such as the cochlear implant, have been able to be used to regain the greater part of the sense of lost hearing. Visual prostheses have been considered potential cure for people who suffer from blindness. Though such prostheses have been extensively studied over the decade, there are, however, still many bottlenecks that need to be overcome prior to actual application. This dissertation aims for accomplishing an efficient system for visual prostheses. While the designs presented in the dissertation are mainly for such applications, they are easy to be applied to other similar systems with different prosthetic purposes, with only minor modification of the system.
With regard to the contents of the dissertation, first of all, an ASK demodulator architecture capable of dealing with most of the previous limitations in an ASK-utilized medical implant, especially in want of being powered through wireless delivering, is proposed. It features the abilities of working on a very small modulation index and being provided without any R/C component(s) inside by means of a self-sampling scheme. Implemented in a 0.18-μm CMOS process, the demodulator occupies a die size of merely 32.3×14.5 (um×um). Analytic results from both simulation gradation and measurement phase show that the proposed circuit can operate at carrier frequency of 2 MHz and achieve a modulation rate of up to 50% when tested under an experimental set-up using signal generator. The average power consumption is in the vicinity of 336 uW. The results also indicate that the presented work can still perform a proper demodulation even with a modulation index is beneath 5.5%.
Second, a fully integrated energy-aware wirelessly powered prosthetic system architecture based on adiabatic switching has been developed. The proposed architecture can allow up to 40 frame/sec with 240 stimulus channels in mode I and three times the resolution at the same frame rate in mode II under a carrier frequency of 2 MHz, suitable for the multi-channel prostheses requiring real-time scanning such as visual prostheses. To cater to higher spatial resolution in sensation, the prototypical system has been constructed with a 16-channel-based stimulation scheme so that the design can be extended toward various experimental requirements. Fabricated in a
0.18-um CMOS process, the proposed prosthetic system has an 80% reduction in BER of the demodulated data and 18% saving in the average current consumption of the extraocular platform as compared with those designed in the conventional (non-energy-recovery) baseband architecture, showing the potential of the proposed system in improving overall system efficiency in spite of the weakness of the considerably increased fail-bit rate in other parts of itself. The increased fail-bit rate is mainly associated with the intrinsic dead zone in the logic evaluation in the employed energy recovery technique.
In response to the weakness, the design and experimental evaluation of a new type of irreversible energy recovery logic (ERL) families were conducted and are presented in the third part of the dissertation. The newly developed ERL inherits the advantages of quasi-static ERL (QSERL) family, but is with improved driving ability and circuit robustness. It also features no hold phase compared to its QSERL counterpart under the same operation conditions; thereupon no feedback keeper is required. This yields considerable improvements in area and power overheads as a whole. Moreover, the throughput of the newly developed energy recovery logic becomes twice as high as that of QSERL when tested with the same frequencies of power clocks. Comparison between the proposed logic style and other known logic style achieving iso-performance, namely, subthreshold logic is given. To demonstrate the workability of the proposed logic style, an 8-bit shift register, designed in the proposed logic style, has been fabricated in the 0.18-um CMOS process. Both simulation and measurement results verify the functionality and advantages of the proposed logic, suggesting that it is suitable for implementing performance-efficient and energy-aware very-large-scale integration (VLSI) circuitry and being used in the energy-aware electronic prosthetic system to cope with the choke point mentioned above namely the increased fail-bit rate.
In the last part of the dissertation, two techniques are presented to further enhance the system efficiency. The first is an efficient phase-shift keying demodulator (PSKD) featuring low power, low cost, and truly low-complexity implementation. By taking advantages of a high signal-to-noise ratio on wirelessly power-combined data transmission, the demodulation of the BPSK signal can be performed without the complex carrier recovery circuits requiring phase-locked loop (PLL). The proposed PSK demodulator, the circuit schematic of which has been fabricated in the 0.18-um CMOS process, recovers a binary data rate with up to 800 Kbps while consumes power less than 59 uW when tested in a real wireless-link setup. The second refers to a fully integrated low-loss CMOS rectifier. By making use of high-performance active diodes fulfilling almost ideal switching (zero forward voltage drop) and circuit to be provided with negative resistance, the proposed design is able to achieve a maximum of more than 90% conversion efficiency when fabricated in the 0.18-um standard CMOS process and tested in a real wireless link, without any special device requiring additional manufacturing procedures. The design considerations along with the proposed system and each of the key building block techniques will be detailed in the dissertation.
關鍵字(中) ★ 輔具
★ 生醫
★ 電路與系統
★ 混合訊號
★ 可植入式
關鍵字(英) ★ prosthesis
★ medical
★ circuits and systems
★ mixed-signal
★ implantable
論文目次 Abstract iv
List of Tables xiii
List of Figures xiv
Chapter 1 Introduction 1
1.1 Overview of Electronic Implant System. . . . . . 2
1.1.1 Transmission Type. . . . . . 2
1.1.2 Implant Functionality. . . . . . 3
1.2 Motivation. . . . . . 4
1.3 Design Considerations. . . . . . 5
1.4 Organization of the Dissertation. . . . . . 7
Chapter 2 RC-Free ASK Demodulator for Implantable Systems 9
2.1 Chapter Overview. . . . . . 9
2.2 Overview of ASKD Families. . . . . . 10
2.3 System Considerations and Circuit Design. . . . . . 18
2.3.1 ASKDs in Subminiature Wireless-Powering Devices. . . . . . 18
2.3.2 Circuit Topology. . . . . . 24
2.3.3 Simulation Analysis. . . . . . 31
2.4 Results and Discussion . . . . . . 35
2.5 Summary of the Chapter. . . . . . 41
Chapter 3 Implantable Circuitry with Adiabatic Switching Technique 43
3.1 Chapter Overview. . . . . . 43
3.2 Architecture. . . . . . 43
3.3 System Implementation. . . . . . 47
3.3.1 Building Block Technique. . . . . . 47
3.3.2 Adiabatic Principle. . . . . . 48
3.3.3 Irreversible Energy Recovery Logic Families. . . . . . 49
3.3.4 ADL-related family. . . . . . 50
3.3.5 2N2P-related family. . . . . . 50
3.3.6 PAL-related family. . . . . . 52
3.3.7 TSEL-related family. . . . . . 52
Chapter 4 Circuit Design for Adiabatic Electronic Prosthesis 60
4.1 Chapter Overview. . . . . . 60
4.2 Regulator, Voltage Reference Circuit, and Demodulator. . . . . . 60
4.3 Power Clock Generator. . . . . . 62
4.4 Clock Regeneration Circuit and Check Decision Circuit. . . . . . 63
4.5 Power-On-Reset Circuit, Data Recovery Circuit, and Frame Generator 64
4.6 Serial-to-Parallel Converter, Decoder, and Image Buffer. . . . . . 65
4.7 Programmable Controller. . . . . . 66
4.8 Microstimulator. . . . . . 66
4.9 Results. . . . . . 69
4.10 Summary of Chapter 3 and Chapter 4. . . . . . 72
Chapter 5 Design Improvement - Complementary Energy Path Adiabatic Logic 83
5.1 Chapter Overview. . . . . . 83
5.2 Limitations in Irreversible ERL Families. . . . . . 85
5.3 Complementary Energy Path Adiabatic Logic. . . . . . 86
5.3.1 Operation and Analysis of CEPAL. . . . . . 86
5.3.2 Leakage Impact. . . . . . 88
5.3.3 Fault Tolerance. . . . . . 89
5.3.4 Driving Ability. . . . . . 89
5.3.5 Implementation Cost and Power Efficiency. . . . . .90
5.3.6 Vt Mismatch. . . . . . 91
Chapter 6 CEPAL versus Subthreshold Logic 99
6.1 Chapter Overview. . . . . . 99
6.2 Choice of Subthreshold Logic. . . . . . 100
6.3 Comparison. . . . . . 102
6.4 Results and Analysis. . . . . . 106
6.5 Summary of Chapter 5 and Chapter 6. . . . . . 110
Chapter 7 Further Optimization - Quasi-Coherent PSK Demodulator 115
7.1 Chapter Overview. . . . . . 115
7.2 Carrier Recovery and PSK Demodulation. . . . . . 117
7.3 Quasi-Coherent PSK Demodulator. . . . . . 118
7.4 Results. . . . . . 124
7.5 Summary of the Chapter. . . . . . 124
Chapter 8 Further Optimization - Fully Integrated CMOS Rectifier 126
8.1 Chapter Overview. . . . . . 126
8.2 Prior Arts and Proposed Design. . . . . . 128
8.3 Results. . . . . . 133
8.4 Summary of the Chapter. . . . . . 136
Chapter 9 Conclusions and Future Works 138
9.1 Conclusions. . . . . . 138
9.2 Future Works. . . . . . 139
Bibliography 142
參考文獻 [1] L. Hyman, ”Epidemiology of eye diseases in the elderly,” Eye., vol. 1, pp. 330, 1987.
[2] L. P. Agarwal, S. R. K. Malik, M. Mohan, P. R. Karwal, ”Retinitis pigmentosa: a new therapeutic approach,” Br J Ophthalmol., 47:144 - 148, 1963.
[3] G. A. Fishman; V. Vasquez; M. Fishman, D. Berger, ”Visual loss and foveal lesions in Usher’s syndrome,” Br J Ophthalmol., vol. 63, pp. 484 - 488, 1979.
[4] J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, A. P. Adamis, ”Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies,” Surv
Ophthalmol. 48(3):257 - 93, 2003.
[5] E. L. Berson, B. Rosner, M. A. Sandberg, K. C. Hayes, B. W. Nicholson, C. Weigel-DiFranco and W. Willett, ”A randomized trial of vitamin A and vitamin
E supplementation for retinitis pigmentosa,” Archives of Ophthalmol., 111(6):761 - 72., Jun. 1993.
[6] A. Santos, M. S. Humayun, E. Jr. de Juan, R. J. Greenburg, M. J. Marsh, I. B. Klock, A. H. Milam, ”Preservation of the inner retina in retinitis pigmentosa. A
morphometric analysis.,” Archives of Ophthalmol., 115(4), 511 - 515, Apr. 1997.
[7] M. S. Humayun, M. Prince, E. Jr. de Juan, Y. Barron, M. Moskowitz, I. B. Klock, A. H. Milam, ”Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa.,” Investigative Ophthalmol. and Visual Sci., 40(1), 143 - 148, Jan. 1999.
[8] S. Y. Kim, S. Sadda, M. S. Humayun, E. Jr. de Juan, B. M. Melia, W. R. Green, ”Morphometric analysis of the macula in eyes with geographic atrophy due to
age-related macular degeneration.,” Retina, 22(4), 464 - 470, Aug. 2002.
[9] S. Y. Kim, S. Sadda, J. Pearlman, M. S. Humayun, E. Jr. de Juan, B. M. Melia, W. R. Green, ”Morphometric analysis of the macula in eyes with disciform agerelated
macular degeneration.,” Retina, 22(4), 471 - 477, Aug. 2002.
[10] A. Y. Chow, M. T. Pardue, V. Y. Chow, G. A. Peyman, C. Liang, J. I. Perlman, and N. S. Peachy, ”Implantation of silicon chip microphotodiode arrays into the
cat subretinal space,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 9, no. 1, pp. 86 - 95, Mar. 2001.
[11] W. Liu and M. Humayun, ”Retinal prosthesis,” ISSCC Dig. Tech. Papers, pp. 218 - 219, 2004.
[12] L. Theogarajan, J. Wyatt, J. Rizzo, B. Drohan, M. Markova, S. Kelly, G. Swider, M. Raj, D. Shire, M. Gingerich, J. Lowenstein, B. Yomtov, ”Minimally
invasive retinal prosthesis,” Proc. IEEE Int. Solid-State Cir. Conf., pp. 99 - 108, 2006.
[13] T. Schanze, L. Hesse, C. Lau, N. Greve, W. Haberer, S. Kammer, T. Doerge, A. Rentzos, T. Stieglitz, ”An optically powered single-channel stimulation implant
as test system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses,” IEEE Trans. Biomed. Eng., vol. 54, pp. 983 - 992, Jun.
2007.
[14] J. Ohta, T. Tokuda, K. Kagawa, T. Furumiya, A. Uehara, Y. Terasawa, M. Ozawa, T. Fujikado, Y. Tano, ”Silicon LSI-based smart stimulators for retinal
prosthesis,” IEEE Eng. Med. Biol. Mag., vol. 25, pp. 47 - 59, Sept.-Oct. 2006.
[15] C. Veraart, F. Duret, M. Brelen, J. Delbeke, ”Vision rehabilitation with the optic nerve visual prosthesis,” Proc. 26th Ann. Int. Conf. IEEE EMBS, vol. 2, pp. 4163 - 4164, Jun. 2004.
[16] M. Piedade, J. Gerald, L. Augusto Sousa, G. Tavares, P. Tomas, ”Visual neuroprosthesis: a non invasive system for stimulating the cortex” IEEE Trans. Cir. Syst. I: Regular Papers, vol. 52, pp. 2648 - 2662, December 2005.
[17] J. Coulombe, M. Sawan, J.-F. Gervais, ”A highly flexible system for microstimulation of the visual cortex: design and implementation,” IEEE Trans. Biomed. Cir. Syst., vol. 1, pp. 258 - 269, December 2007.
[18] K. Cha, K. Horch, R. A. Normann, ”Simulation of a phosphene-based visual field: Visual Acuity in a pixelized vision system,” Ann. Biomed. Eng., vol. 20, pp. 439 - 449, 1992.
[19] M. S. Humayun, E. de Juan Jr., J. D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, S. Suzuki, ”Pattern electrical stimulation of the human retina,” Vision
Research, vol. 39, pp. 2569 - 2576, 1999.
[20] L. E. Hallum, S. C. Chen, P. J. Preston, G. J. Suaning, and N. H. Lovell, ”Simulating prosthetic vision,” Proc. ARVO, Florida, USA, 2005.
[21] M. Ghovanloo, K. Najafi, ”A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Trans. Cir. Syst. I: Regular Papers, vol. 51, pp. 2374 - 2383, December 2004.
[22] D. Merrill, M. Bikson, and J. Jefferys, ”Electrical stimulation of excitable tissue: design of efficacious and safe protocols,” J Neurosci Meth, vol. 141, pp. 171-198,
2005.
[23] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, J. Granacki, J. Lacoss, and J. Wills, ”Implantable biomimetic microelectronic systems design,” IEEE Eng.
Med. Biol. Mag., vol. 24, pp. 66 - 74, Sept.-Oct. 2005.
[24] C. Q. Huang, R. K. Shepherd, P. M. Center, P. M. Seligman, B. Tabor, ”Electrical stimulation of the auditory nerve: direct current measurement in vivo,”
IEEE Trans. Biomed. Eng., vol. 46, pp. 461 - 469, Apr. 1999.
[25] M. Sivaprakasam, L. Wentai, M.S. Humayun, J.D. Weiland, ”A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic
device,” IEEE J. Solid-State Cir., vol. 40, pp. 763-771, 2005.
[26] M. Ortmanns, N. Unger, A. Rocke, M. Gehrke, H.J. Tietdke, ”A 0.1mm2 digitally programmable nerve stimulation pad cell with high-voltage capability for a
retinal implant,” Proc. IEEE Int. Solid-State Cir. Conf., pp. 89 - 98, Feb. 2006.
[27] G. Gunnar, E. Bruun, and H. Morten, ”A chip for an implantable neural stimulator,” J. Analog Integr. Cir. Sig. Process., vol. 22, pp. 81-89, 1999.
[28] M. Bar´u, H. Valdenegro, C. Rossi, and F. Silveira, ”An ASK demodulator in CMOS technology,” Proc. IV Iberchip Workshop, Mar del Plata, Argentina, 1998, pp. 37-42.
[29] H. Yu, K. Najafi, ”Circuitry for a wireless microsystem for neural recording microprobes,” Proc. 23rd IEEE-EMBS, vol. 1, pp. 761-764, 2001.
[30] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. De Juan, J. D. Weiland, and R. Greenberg, ”A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE
J. Solid-State Cir., vol. 35, no. 10, pp. 1487-1497, Oct. 2000.
[31] Y.-T. Lin, T. Wang, S.-S. Lu, and G.-W. Huang, ”A 0.5 V 3.1 mW Fully Monolithic OOK Receiver for Wireless Local Area Sensor Network,” IEEE Intl. Asian Solid-State Cir. Conf., Hsin-Chu, Nov. 2005.
[32] C.-H. Chen, R.-Z. Hwang, L.-S. Huang S. Lin, H.-C. Chen, Y.-C. Yang, Y.-T. Lin, S.-A. Yu, Y.-H. Wang, N.-K. Chou ,and S.-S. Lu, ”A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics,” ISSCC Dig. Tech. Papers, No.30.6, San Francisco, Feb. 2006.
[33] M. Dong, C. Zhang, Z. Wang, and D. Li, ”A neuro-stimulus chip with telemetry unit for cochlear implant,” IEEE Intl. Workshop Biomed. Cir. Syst., pp. S1/3/INV-S1/39-12, December 2004.
[34] S.-Y. Lee and S.-C. Lee, ”An implantable wireless bidirectional communication microstimulator for neuromuscular stimulation,” IEEE Transactions on Cir.
Syst. I: Regular Papers, vol. 52, Issue 12, pp. 2526-2538, December 2005.
[35] A. Djemouai and M. Sawan, ”Integrated ASK Demodulator Dedicated to Implantable Electronic Devices,” The 46th IEEE Midwest Symposium on Cir. Syst., 2003.
[36] A. Djemouai and M. Sawan, ”New CMOS current-mode amplitude shift keying demodulator (ASKD) dedicated for implantable electronic devices,” Intl. Symp. Cir. Syst., vol. 1, pp. I-441-4 Vol.1, 23-26 May. 2004.
[37] C.-C. Wang, Y.-H. Hsueh, U-F. Chio, and Y.-T. Hsiao, ”A C-less ASK demodulator for implantable neural interfacing chips,” Intl. Symp. Cir. Syst., Vol. 4,
pp. IV-57-60 Vol.4, 23-26 May. 2004.
[38] K. Arabi and M. A. Sawan, ”Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation,”IEEE Trans. Neural Sys. Rehabil.
Eng., vol. 7, Issue 2, pp. 204-214, June 1999.
[39] G. J. Suaning and N. H. Lovell, ”CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry,” IEEE Trans.
Biomed. Eng., vol. 48, no. 2, pp. 248-260, Feb. 2001.
[40] C.-S. Alex Gong et al, ”Design of self-sampling based ASK demodulator for implantable microsystem,” Proc. IEEE Intl. Conf. Electron., Cir. Sys., pp. 33 - 36, December 2006.
[41] C.-S. Alex Gong, M.-T. Shiue, K.-W. Yao, T.-Y. Chen, Y. Chang, and C.-H. Su, ”A truly low-cost high-efficiency ASK demodulator based on self-sampling scheme for bioimplantable applications,” IEEE Trans. Cir. and Sys. I: Regular Papers, Vol. 55, Issue 6, pp. 1464 - 1477, Jul. 2008.
[42] Atmel Application Note, ”Understanding the Requirements of ISO/IEC 14443 for Type B Proximity Contactless Identification Card,” Nov. 2005. [Online].
Available: http://www.atmel.com/dyn/resources/prod documents/doc2056.pdf
[43] E. Litvak, K. R. Foster, M. H. Repacholt, ”Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz,”
Bioelectromagnetics, vol. 23, Issue 1, pp. 68 - 82, 2002.
[44] Jordi Parramon i Piella, ”Energy management, wireless and system solutions for highly integrated implantable,” la Universitat Aut´onoma de Barcelona, Spain, Desembre del 2001.
[45] C. Sauer, M. Stanacevic, G. Cauwenberghs and N. Thakor, ”Power harvesting and telemetry in CMOS for implanted devices,” IEEE Trans. Cir. Syst. I: Regular
Papers, vol. 52, pp. 2605-2613, 2005.
[46] H. Yu and R. Bashirullah, ”A low power ASK clock and data recovery circuit for wireless implantable electronics,” Proc. IEEE Custom Integrated Cir. Conf.,
pp. 249 - 252, Sept. 2006.
[47] D. J. Comer and D. T. Comer, ”Using the weak inversion region to optimize input stage design of CMOS op amps,” IEEE Trans. Cir. Syst. II: Express Briefs, vol. 51, pp. 8 - 14, 2004.
[48] B. Razavi, ”Design of Analog CMOS Integrated Circuits,” 1st ed. NY:McGRAW-HILL. Press, 2000.
[49] N. H. E. Weste and D. Harris, ”CMOS VLSI Design - A circuits and systems perspective,” 3rd ed. MA: Addison-Wesley. Press, 2005.
[50] S. F. Al-Sarawi, ”Low power Schmitt trigger circuit,” Electron. Lett., vol. 38, Issue 18, pp. 1009 - 1010, 29 Aug. 2002.
[51] M. Afghahi and C. Svensson, ”A unified single-phase clocking scheme for VLSI systems,” IEEE J. Solid-State Cir., Vol. 25, Issue 1, pp. 225 - 233, Feb. 1990.
[52] J.-S. Wang, P.-H. Yang and D. Sheng, ”Design of a 3-V 300-MHz low-power 8-b8-b pipelined multiplier using pulse-triggered TSPC flip-flops,” IEEE J. Solid-
State Cir., Vol. 35, Issue 4, pp. 583 - 592, April 2000.
[53] P. Nilsson and M. Torkelson, ”A monolithic digital clock-generator for on-chip clocking of custom DSP’s,” IEEE J. Solid-State Cir., vol. 31, Issue 5, pp. 700 -
706, May 1996.
[54] P. R. Troyk and M. Edgington, ”Inductive links and drivers for remotelypowered telemetry systems,” IEEE Antennas and Propagation Society Intl. Symp., pp. 60 - 62, 2000.
[55] A. M. Shams and M. A. Bayoumi, ”A novel high-performance CMOS 1-bit full-adder cell,” IEEE Transactions Cir. Syst. II: Analog and Digital Signal Processing, vol. 47, Issue 5, pp. 478 - 481, May 2000.
148
[56] B. P. Lathi, ”Modern Digital and Analog Communication Systems” 3rd ed. NY: Oxford University Press, 1998.
[57] Y. Hu and M. Sawan, ”A fully integrated low-power BPSK demodulator for implantable medical devices,” IEEE Trans. Cir. Syst. I: Regular Papers, vol. 52, pp. 2552 - 2562, December 2005.
[58] G. Gudnason and E. Bruun, ”CMOS circuit design for RF sensors,” 1st ed. Netherlands: Springer. Press, 2002.
[59] P. Mohseni, K. Najafi, ”A 1-MHz, 5-Kb/s wireless command receiver for electronic site selection in multichannel neural biopotential recording,” Proc. 28th
Ann. Int. Conf. IEEE EMBS, pp. 6241 - 6244, Aug. 2006.
[60] M. Sivaprakasam, W. Liu, G. Wang, J. D. Weiland, M. S. Humayun, ”Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE
Trans. Cir. Syst. I: Regular Papers, vol. 52, pp. 2629 - 2641, December 2005.
[61] C.-S. Alex Gong, M.-T. Shiue and Y. Chang, ”Design and implementation of a monolithic programme-controlled system for retinal prosthesis,” Proc. IEEE Intl. Conf. Electron., Cir. Sys., pp. 351 - 354, December 2006.
[62] N. Dommel, Y. T. Wong, P. J. Preston, T. Lehmann, N. H. Lovell, and G. J. Suaning, ”The design and testing of an epi-Retinal vision prosthesis neurostimulator
capable of concurrent parallel stimulation,” Proc. 28th Ann. Int. Conf. IEEE EMBS, pp. 4700 - 4709, Aug. 2006.
[63] A. Y. Chow, V. Y. Chow, K. H. Packo, J. S. Pollack, G. A. Peyman, R. Schuchard, ”The artificial silicon retina microchip for the treatment of vision
loss from retinitis pigmentosa,” Arch. Ophthalmol., vol. 122, no. 4, pp. 460 - 469, 2004.
[64] M. Sivaprakasam, W. Liu, G. Wang, L. Hoang, J. Weiland, M. Humayun, ”Towards a modular 32 x 32 pixel stimulator for retinal prosthesis,” IEEE/NLM Life Sci. Syst. Appl. Workshop, pp. 1 - 2, Jul. 2006.
[65] D. Scribner, L. Johnson, P. Skeath, R. Klein, D. Ilg, L. Wasserman, N. Fernandez, W. Freeman, J. Peele, F. K. Perkins, E. J. Friebele, W. E. Bassett, J. G.
Howard, and W. Krebs, ”A retinal prosthesis technology based on CMOS microelectronics and microwire glass electrodes,” IEEE Trans. Biomed. Cir. Syst.,
vol. 1, pp. 73 - 84, Mar. 2007.
[66] G. Gudnason, ”A low-power ASK demodulator for inductively coupled implantable electronics,” Proc. 26th European Solid-State Cir. Conf., pp. 385 -
388, Sept. 2000.
[67] C. K. Liang, J. J. J. Chen, C. L. Cheng, C. L. Chung, C. C. Wang, ”An implantable bi-directional wireless transmission system for transcutaneous recording
of biological signal,” Physiol. Meas. 26, pp. 83 - 97, 2005.
[68] P. Rakers, L. Connell, T. Collins, and D. Russell, ”Secure contactless smartcard ASIC with DPA protection,” IEEE J. Solid-State Cir., vol. 36, pp. 559 - 565,
2001.
[69] A. G. Dickinson and J. S. Denker, ”Adiabatic dynamic logic,” IEEE J. Solid-State Cir., vol. 30, pp. 311 - 315, 1995.
[70] A. Kramer, J. S. Denker, S. C. Avery, A. G. Dickinson, and T. R. Wik, ”Adiabatic Computing with the 2n-2n2d Logic Family,” Proc. Symp. VLSI Cir., pp.
25 - 26, Jun. 1994.
[71] A. Kramer, J. S. Denker, B. Flower, J. Moroney, ”2nd order adiabatic computation with 2N-2P and 2N-2N2P logic circuits,” Proc. Int. Symp. Low Power
Design, pp. 191 - 196, 1995.
[72] Y. Moon and D.-K. Jeong, ”An efficient charge recovery logic circuit,” IEEE J. Solid-State Cir., Vol. 31, pp. 514 - 522, Apr. 1996.
[73] V.G. Oklobdzija, D. Maksimovic, F. Lin, ”Pass-transistor adiabatic logic using single power-clock supply,” IEEE Trans. Cir. Syst. II: Express Briefs, vol. 44, pp. 842 - 846, Oct. 1997.
[74] D. Maksimovic, V.G. Oklobdzija, B. Nikolic, K. W. Current, ”Clocked CMOS adiabatic logic with integrated single-phase power-clock supply,” IEEE Trans.
VLSI Syst., vol. 8, pp. 460 - 463, Aug. 2000.
[75] H. Soeleman, K. Roy, and B. C. Paul, ”Robust subthreshold logic for ultra-low power operation,” IEEE Trans. VLSI Syst., vol. 9, pp. 90 - 99, 2001.
[76] Y. Ye and K. Roy, ”QSERL: quasi-static energy recovery logic,” IEEE J. Solid-State Cir., vol. 36, pp. 239 - 248, Feb. 2001.
[77] G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, ”Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants,” IEEE Trans. Cir. Syst. I: Regular Papers, vol. 52, pp. 2109 - 2117, 2005.
[78] W. Yeung, C. Chan, C. Choy, K. Pun, ”Clock recovery circuit with adiabatic technology (quasi-static CMOS logic),” Proc. IEEE Int. Symp. Cir. Syst., vol.
2, pp. II-185 - II-187, 2003.
[79] C.-S. Alex Gong, C.-H. Su, M.-T. Shiue and Y. Chang, ”An efficient micro-stimulator array using unitary-size DAC with adiabatic baseband scheme,” Proc. IEEE Intl. Conf. Electron., Cir. Sys., pp. 29 - 32, December 2006.
[80] B. L. Draper, M. Okandan, S. S. Mani, R. S. Bennett, ”A novel method of fabricating integrated FETs for MEMS applications,” J. Microelectromechanical
Syst., vol. 13, no. 3, pp. 500 - 504, Jun. 2004.
[81] Y. Jiang, Abdulkarim Al-Sheraidah, Y. Wang, E. Sha, and J. Chung, ”A novel multiplexer-based low-power full adder,” IEEE Trans. Cir. Syst. II: Express Briefs, vol. 51, pp. 345 - 348, Jul. 2004.
[82] M. I. Talukder, P. Siy, and G. W. Auner, ”Parallel multiplexing - a solution of large scale stimulation needed by the retinal prostheses to maintain the persistence of vision,” Proc. 28th Ann. Int. Conf. IEEE EMBS, pp. 2816 - 2819, Aug. 2006.
[83] M. Ortmanns, N. Unger, A. Rocke, S. Rackow, M. Gehrke, H.J. Tiedtke, ”A 232-channel visual prosthesis ASIC with production-compliant safety and testability,”
Proc. IEEE Int. Solid-State Cir. Conf., pp. 152 - 593, 2007.
[84] J. D. Weiland and M. S. Humayun, ”A biomimetic retinal stimulating array,”IEEE Eng. Med. Biol. Mag., vol. 24, pp. 14 - 21, Sept.-Oct. 2005.
[85] J. D. Weiland, W. Fink, M. Humayun, W. Liu, D. C. Rodger, Y. Tai, M. Tarbell, ”Progress towards a high-resolution retinal prosthesis,” Proc. 27th Ann.
Int. Conf. IEEE EMBS, pp. 7373 - 7375, Aug. 2005.
[86] J. Rizzo, J. Wyatt, J. Loewenstein, S. Kelly, and D. Shire, ”Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays,” Invest. Ophthalmol. Vis. Sci., vol. 44, pp. 5355 - 5361, 2003.
[87] A. Rothermel, V. Wieczorek, L. Liu, A. Stett, M. Gerhardt, A. Harscher, S. Kibbel, ”A 1600-pixel subretinal chip with DC-free terminals and ±2V supply
optimized for long lifetime and high stimulation efficiency,” Proc. IEEE Int. Solid-State Cir. Conf., pp. 144 - 602, 2008.
[88] Edward K.F. Lee and Anthony Lam, ”A matching technique for biphasic stimulation pulse,” Proc. IEEE Int. Symp. Cir. Syst., pp. 817 - 820, May. 2007.
[89] C. Wang, T. Lee, Y. Hsiao, U. Chio, C. Huang, J. J. Chin, Y. Hsueh, ”A multiparameter implantable microstimulator SOC,” IEEE Trans. VLSI Syst., vol. 13, pp. 1399 - 1402, 2005.
[90] C.-S. Alex Gong, K.-W. Yao, C.-H. Su, S.-Y. Ho, C.-T. Hong, T.-Y. Chen, J.-W. Lu, Y. Chang, and M.-T. Shiue, ”A fully integrated energy-aware baseband circuitry for next-generation retinal implants,” Proc. IEEE EMBS Conf. Neural
Eng., pp. 110 - 113, May, 2007.
[91] W. C. Athas, L. J. Svensson, J. G. Koller, N. Tzartzanis, and E. Y.-C. Chou, ”Low-power digital systems based on adiabatic-switching principles,” IEEE
Trans. VLSI Syst., vol. 2, pp. 398 - 407, December 1994.
[92] Y. Ye and K. Roy, ”Energy recovery circuits using reversible and partially reversible logic,” IEEE Trans. Cir. Syst. I, vol. 43, pp. 769 - 778, Sept. 1996.
[93] J. Lim, D. G. Kim, S. I. Chae, ”A 16-bit carry-lookahead adder using reversible energy recovery logic for ultra-low-energy systems,” IEEE J. Solid-State Cir., vol.
34, pp. 898 - 903, Jun. 1999.
[94] L. Varga, F. Kovacs and G. Hosszu, ”An improved pass-gate adiabatic logic,”Proc. IEEE ASIC/SOC, pp. 208 - 211, Sept. 12-15, 2001.
[95] L. G. Heller and W. R. Griffin, ”Cascode voltage switch logic: A differential CMOS logic family,” ISSCC Dig. Tech. Papers, pp. 16 - 17, 1984.
[96] F. Liu and K.T. Lau, ”Pass-transistor adiabatic logic with NMOS pull-down configuration,” Electron. Lett., vol. 34, pp. 739 - 741, 1998
[97] S. Kim and M. C. Papaefthymiou, ”True single-phase adiabatic circuitry,” IEEE Trans. VLSI Syst., vol. 9, pp. 52 - 63, Feb. 2001.
[98] V. De and J. D. Meindl, ”Complementary adiabatic and fully adiabatic MOS logic families for gigascale integration,” ISSCC Dig. Tech. Papers, pp. 298 - 299,
1996.
[99] M.-E. Hwang, A. Raychowdhury, K. Roy, ”Energy-recovery techniques to reduce on-chip power density in molecular nanotechnologies,” IEEE Trans. Cir. Syst. I, vol. 52, pp. 1580 - 1589, Aug. 2005.
[100] V. Sathe, J.-Y. Chueh, M. Papaefthymiou, ”A 1.1 GHz charge-recovery logic,”ISSCC Dig. Tech. Papers, pp. 1540 - 1549, 2006.
[101] C.-S. Alex Gong, M.-T. Shiue, C.-T. Hong, C.-H. Su, and K.-W. Yao, ”Analysis and design of an efficient complementary energy path adiabatic logic for
low-power system applications,” Proc. IEEE Intl. SOC Conf., pp. 247 - 250, Sept. 2007.
[102] C.-S. Alex Gong, M.-T. Shiue, C.-T. Hong, and K.-W. Yao, ”Analysis and design of an efficient irreversible energy recovery logic in 0.18-μm CMOS,” IEEE Trans. Cir. Syst. I: Regular Papers, Vol. 55, Issue 9, pp. 2595 - 2607, Oct. 2008.
[103] N. H. E. Weste and D. Harris, ”CMOS VLSI Design - A circuits and systems perspective,” 3rd ed. MA: Addison-Wesley. Press, 2004.
[104] K. Roy, S. Mukhopadhyay, and H. Mahmoodi, ”Leakage current mechanisms and leakage reduction techniques in deep-submicron CMOS circuits,” Proc. IEEE, vol. 91, pp. 305 - 327, Feb. 2003.
[105] C.-C. Wang, Y.-L. Tseng, H.-Y. Leo, R. Hu, ”A 4-kB 500-MHz 4-T CMOS SRAM using low-VTHN bitline drivers and high-VTHP latches,” IEEE Trans. VLSI Syst., vol. 12, pp. 901 - 909, Sept. 2004.
[106] D. A. Hodges, H. G. Jackson, R. A. Saleh, ”Analysis and design of digital integrated circuits,” 3rd ed. NY: McGraw-Hill. Press, 2003.
[107] H. Soeleman and K. Roy, ”Ultra-low power digital subthreshold logic circuits,”Proc. Int. Symp. Low Power Electron. Design, pp. 94 - 96, 1999.
[108] H. Soeleman, K. Roy, B. C. Paul, ”Robust subthreshold logic for ultra-low power operation,” IEEE Trans. VLSI Syst., vol. 9, pp. 90 - 99, Feb. 2001.
[109] J. Nyathi and B. Bero, ”Logic circuits operating in subthreshold voltages,”Proc. Int. Symp. Low Power Electron. Design, pp. 131 - 134, Oct. 2006.
[110] W.-K. Yeung, C.-F. Chm, C.-S. Choy, K.-P. Pun, ”Clock recovery circuit with adiabatic technology (quasi-static CMOS logic) ,” Proc. Int. Symp. Cir. Syst.
(ISCAS), vol. 2, pp. II-185 - II-187, May 2003.
[111] R. Tessier, D. Jasinski, A. Maheshwari, A. Natarajan, W. Xu, and W. Burleson, ”An energy-aware active smart card,” IEEE Trans. VLSI Syst., vol.
13, pp. 1190 - 1199, Oct. 2005.
[112] Uming Ko and P. T. Balsara, ”High-performance energy-efficient D-flip-flop circuits,” IEEE Trans. VLSI Syst., vol. 8, pp. 94 - 98, Feb. 2000.
[113] N. Nedovic, W. W. Walker, V. G. Oklobdzija, ”A test circuit for measurement of clocked storage element characteristics,” IEEE J. Solid-State Cir., vol. 39, pp.
1294 - 1304, Aug. 2004.
[114] K. Kanda, H. Sadaaki, and T. Sakurai, ”90% write power-saving SRAM using sense-amplifying memory cell,” IEEE J. Solid-State Cir., vol. 36, pp. 927 - 933,
Jun. 2004.
[115] L. Chang, D.M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K. Montoye, L. Sekaric, S. J. McNab, A. W. Topol, C. D. Adams, K. W. Guarini,
and W. Haensch, ”Stable SRAM cell design for the 32 nm node and beyond,”Proc. Symp. VLSI Technology Dig., Jun. 2005, pp. 128 - 129.
[116] K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishii, and H. Kobatake, ”A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications,” IEEE J. Solid-State Cir., vol. 41, pp. 113 - 121, Jan. 2006.
[117] Z. Liu and V. Kursun, ”Characterization of a novel nine-transistor SRAM cell,” IEEE Trans. VLSI Syst., vol. 16, pp. 488 - 492 3, April 2008.
[118] Y. Chung and S.-W. Shim, ”Sub-1V embedded SRAM with bit-error immune dual-boosted cell technique,” Electron. Lett., vol. 43, pp. 157 - 158, Feb. 2007.
[119] C.-S. Alex Gong, C.-T. Hong, M.-T. Shiue, and K.-W. Yao, ”A compact and low-power SRAM with improved read static noise margin,” Proc. IEEE Intl. Conf. Electron., Cir. Sys., pp. 546 - 549, Sept. 2008.
[120] C.-S. Alex Gong, C.-T. Hong, K.-W. Yao, M.-T. Shiue, ”A low-power areaefficient SRAM with enhanced read stability in 0.18-um CMOS,” Proc. IEEE Asia Pacific Conf. Cir. Sys., December 2008.
[121] M. Dong, C. Zhang, S. Mai, Z. Wang, D. Li, ”A wideband frequency-shift keying demodulator for wireless neural stimulation microsystems, ” Proc. Int.
Conf. VLSI Design, pp. -, Jan. 2006.
[122] C.-S. Alex Gong, K.-W. Yao, M.-T. Shiue, P.-Y. Lin, and C.-N. Huang, ”A miniaturized PSK demodulation device for short-range wireless neural prosthetic sys.,” Proc. (IEEE) Intl. Conf. Bioinformatics Biomed. Eng., pp. 1565 - 1568, May 2008.
[123] C.-S. Alex Gong, M.-T. Shiue, K.-W. Yao, and T.-Y. Chen, ”Low-power and area-efficient PSK demodulator for wirelessly powered implantable command receivers,” Electron. Lett., Vol. 44, Issue 14, pp. 841 - 843, Jul. 2008.
[124] C. R. Johnson and W. A. Sethares, ”Telecommunications Breakdown: Concepts of Communication Transmitted via Software-Defined Radio,” Pap/Cdr ed.
New Jersey: Prentice Hall. Press, Aug. 2003.
[125] N. M. Neihart and R. R. Harrison, ”Micropower circuits for bidirectional wireless telemetry in neural recording applications,” IEEE Trans. Biomed. Eng., vol.
52, pp. 1950-1959, Nov. 2005.
[126] G. Wang, W. Liu, M. Sivaprakasam, M. Zhou, J.D. Weiland, M.S. Humayun, ”A Wireless Phase Shift Keying Transmitter with Q-Independent Phase Transition Time, ” Proc. IEEE 27th EMBS Conf., pp. 5238 - 5241, Sept. 2005.
[127] M. Zhou, W. Liu, G. Wang, M. Sivaprakasam, M. R. Yuce, J. D. Weiland, M. S. Humayun, ”A transcutaneous data telemetry system tolerant to power telemetry interference, ” Proc. IEEE 28th EMBS Conf., pp. 5884 - 5887, Aug. 2006.
[128] M. Ghovanloo and K. Najafi, ”Fully integrated wideband high-current rectifiers for inductively powered devices,” IEEE J. Solid-State Cir., vol. 39, pp. 1976
- 1984, 2004.
[129] C.-S. Alex Gong, K.-W. Yao, J.-Y. Hong, K.-Y. Lin, and M.-T. Shiue, ”Efficient CMOS rectifier for inductively power-harvested implants,” Proc. IEEE
Intl. Conf. Electron Devices Solid-State Cir., December 2008.
[130] C.-L. Chen, K.-H. Chen, S.-I. Liu, ”Efficiency-enhanced CMOS rectifier for wireless telemetry,” Electron. Lett., vol. 43, pp. 976 - 978, 2007.
[131] Y. Li and J. Liu, ”A 13.56 MHz RFID transponder front-end with merged load modulation and voltage doubler-clamping rectifier circuits,” Proc. IEEE Intl. Symp. Cir. Syst., pp. 5095 - 5098, 2005.
[132] Y.-H. Lam, W.-H. Ki and C.-Y. Tsui, ”Integrated low-loss CMOS active rectfier for wirelessly powered devices,” IEEE Trans. Cir. and Sys. II: Express Briefs,
vol. 53, pp. 1378 - 1382, 2006.
[133] C. Peters, O. Kessling, F. Henrici, M. Ortmanns and Y. Manoli, ”CMOS integrated highly efficient full wave rectifier,” Proc. IEEE Intl. Symp. Cir. Syst., pp. 2415 - 2418, 2007.
[134] G. Bawa, U. Jow and M. Ghovanloo, ”A high efficiency full wave rectifier in standard CMOS technology,” Proc. IEEE Midwest Symp. Cir. Syst., pp. 81 - 84, 2007.
[135] E. Margalit, M. Maia, J. D. Weiland, R. J. Greenberg, G. Y. Fujii, G. Torres, D. V. Piyathaisere, T. M. OHearn, W. Liu, G. Lazzi, G. Dagnelie, D. A. Scribner,
E. de Juan Jr., and M. S. Humayun, ”Retinal prosthesis for the blind,” Surv. Ophthalmol., vol. 47, no. 4, pp. 335 - 356, 2002.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2008-11-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明