博碩士論文 945401015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.118.184.211
姓名 吳衍祥(Yen-hsiang Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高速高功率之近彈道單載子傳輸光檢測器於W-頻段射頻光纖系統之應用
(High-Speed and High-Power Near-Ballistic Uni-Traveling-Carrier Photodiode (NBUTC-PD) for the Application of W-Band Radio-over-Fiber (ROF) Communication System)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著光纖通訊的進步,與人們對傳輸頻寬需求的日與劇增,射頻光纖系統已成為未來最可行的系統(radio-over-fiber system)之ㄧ,將寬頻的微波信號經由光纖傳遞,可以擁有低的傳輸損耗與高傳輸頻寬而沒有相位延遲的問題,在最後用戶端前的一公里再利用光子轉換發射器(photonic transmitter)將信號輻射至空氣中,以提供用戶端寬頻無線傳輸的服務,然而在較低的傳輸頻段已無法負荷如此寬頻的信號傳輸,因此在頻帶上的選擇必須往更高頻的W頻段設計,然而卻使此系統中關鍵的元件光電混波器 (optoelectronic mixer) 與光子轉換發射器在設計上更為困難,換言之需要極佳性能的光檢測器才能達到系統的需求,日前,NTT研究團隊所提出一種單載子傳輸光檢測器(Uni-Traveling-Carrier photodiode, UTC-PD),此結構成功解決早期傳統PIN結構因較慢電洞累積於空乏層而造成之飽和效應,由於此結構將原本由電洞所主導的元件飽和效應改由較快的電子所主導,因而大大的提升元件之速度與飽和功率,在此篇論文中我們提出一種創新的結構近彈道傳輸單載子光檢測器(Near-Ballistic-Transport Uni-Traveling-Carrier photodiode, NBUTC-PD),改善先前UTC-PD在偏壓與載子傳輸速上的限制,此結構已被證實有極高的頻寬與飽和電流乘積,在本論文中做了一系列完整的研究與探討。 首先,將介紹側照式NBUTC-PD之設計原理與量測結果,借由在原本的UTC結構中的N掺雜集極層(N-collector layer)中插入了一個P種類電場控制層(P+-Charge layer),及一層未摻雜之電場承受層(Undoped Electric-field-suffered layer),大部分的電場皆落在Electric-field-suffered layer,使電子可以在大部分的區域中都以峰值速度(Peak velocity)傳輸,只有在極薄的Electric-field-suffered layer中以飽和速度傳輸(Saturation velocity),將此結構與漸耦合式光波導結合,不但可以得到高的飽和電流頻寬乘積(> 1280 mA-GHz, @ 40 GHz)也可以擁有高的光響應度(1.14A/W)。因根據前面量測結果發現,所展示的元件具有奇特的頻寬增加現象當光電流上升時,為了近一步釐清其中的物理意義,我們根據所量測到的頻寬響應與S參數建立了一個二端的等校電路,可以將此現象歸因於載子傳輸的峰值速度對電場的非線性與交流電容的減少,此模型的建立不但對元件特性有深一層的了解,更提供了將此元件與其他物件整合時所需的元件模型。接下來,爲進ㄧ步將所研發的元件應用在W頻段的射頻光纖系統中,對元件磊晶結構與尺寸上必須做更進ㄧ步的設計與微縮,因此提出背射型的NBUTC-PD,在磊晶結構上因載子傳輸速度的提升,使空乏區的最佳厚度可以增加進而降低元件電容,在元件背後整合微透鏡不僅可以增加元件響應度還可以增加對準誤差,根據量測的結果此元件可以在同等的元件尺寸下有較高的元件速度與飽和功率(120GHz, 24.6mA, 2952mA-GHz)。然後,我們進一步將元件與被動的帶通濾波器結合做為光電混波器,利用元件特有的偏壓相關的非線性現象,成功的將低頻的資料信號升頻至60GHz與100GHz,並將升頻轉換損耗分別的對光信號與電信號做分析研究,我們發現因低通的濾波器可以在元件產生駐波,進而增加元件非線性與降低轉換損耗,根據量測結果此元件可達到接近1dB的轉換增益,與大於15GHz的調制頻寬。 最後,將元件與側面發射的Yagi天線結合做為光子發射器,利用元件特有的偏壓相關的非線性現象,可以將資料信號直接藉由調變元件偏壓後直接升頻到W頻段,此元件與先前的研究做比較,在合理的接收功率下不但省去昂貴的光調制器與繁複的Si透鏡製作,並且同時將發射器與混波器用ㄧ個元件同時實現,根據量測結果此元件做為光電混波器使用時可達到接近-2.4dB的轉換損耗,而做爲光子發射器時可達大於-14.1dBm的偵測功率於30mA光電流下。在最後利用此元件成功實現1.25Gbit/s BPSK射頻光纖無線傳輸之系統,根據所量測之眼圖所推算之錯誤向量強度可2低於29 當接收之毫微米波功率為-20Bm而光電劉惟15mA時。
摘要(英) To keep pace with progress in fiber communications and the rapid increase in demand for large data capacity it is hoped that radio-over-fiber communication systems will become feasible systems in the future. To do this it is necessary to translate broadband data signals in optical fiber that have low propagation loss and high data capacity without phase delay problems. The final signal is radiated in free space over the last mile to the end user via a photonic transmitter. The system can provide broadband wireless communication services for the user. However, the low frequency bands are too crowded to translate such broadband signals. Thus, it is necessary to select a higher frequency band such as the W band. This however increases the difficulty of designing the optoelectronic mixer and photonic transmitter whose core component is a photodiode. In other words, we need a photodiode with extremely high performance to match the system requirements. Recently a research group at Nippon Telegraph and Telephone Corpration (NTT) has demonstarted a uni-traveling-carrier photodiode (UTC-PD), which minimizes the saturation effect of the traditional pin photodiode, induced by the acumulation of slow photo-generated holes in the absorption region. In this device, the dominant carrier of the saturation phenomenon has been changed from a slow hole carrier to a fast electron carrier, thus greatly improving its speed and saturation power performance. In this study, we demonstrate a new near-ballistic-transport uni-traveling-carrier photodiode (NBUTC-PD) structure, in which the trade-off between the carrier drift velocity and the bias voltage that occurs in traditional UTC-PDs is relaxed. The results indicate that this new structure has superior high bandwidth saturation than the current product. We report and discuss this research in the following manuscript. First, we introduce the design principles and measurement results of the edge-illuminated NBUTC-PD. By inserting an additional p delta-doped layer and an undoped electric-field-buffer layer (E) to the n-doped collector of a traditional UTC-PD, most of the electrical field will cross the E layer. Thus, the electron carrier will drift across the collector layer with an overshoot velocity; only in the thin E layer will it have a saturation drift velocity. By incorporating the structure and the evanescently coupled waveguide, we can not only achieve a high saturation current-bandwidth (>1280mA-GHz, @40GHz), but also high responsivity (1.14A/W). In order to investigate this observed particular bandwidth enhancement phenomenon based on the measurement results, we establish a two port equivalent circuit model which functions according to the measured S parameters and the frequency response. The modeling results suggest that we can attribute the phenomenon to the overshoot drift velocity and the AC reduction capacitance. The established model can not only help us understand the physical characteristics but also provide useful information for the design of other associated components. Then, we demonstrate a back-illuminated NBUTC-PD produced by improving the epi-layer structure and downscaling the active area in order to make it applicable to the W-band ROF system. Because of the overshoot drift velocity, we can further increase the depletion region to reduce the junction capacitance and increase the device speed. By incorporating a microlense, we can improve the device responsivity and alignment tolerance. According to the measurement results, our device can achieve higher speed and saturation current (120GHz, 24.6mA, 2952mA-GHz) than has been reported previously. Then, we discuss how to integrate the device with a band pass filter to serve as an optoelectronic mixer. By taking advantage of the special bias dependence nonlinearity, we can successfully up-convert the intermedium-frequency (IF) signal to 60GHz and 100GHz. The up-conversion loss under different IF and optical local-oscillator (LO) signal powers is also investigated. We found that the filter can reflect the IF power. It forms a standing-wave pattern with a voltage-maximum-peak located around the active device. This phenomenon increases the device nonlinearity and reduces the up-conversion loss. High up-conversion gain (1dB) and large modulation bandwidth (>15GHz) have been observed in our results. Then, we discuss the integration of the device with the planar Yagi antenna to serve as a photonic transmitter. By taking advantage of the special bias dependence nonlinearity, we can up-convert the intermedium-frequency (IF) signal to the W-band through direct modulation. In comparison with that reported previously, not only can we remove the costly optical modulator, and the complex fabrication of the Si lens, but we can also realize the optoelectronic mixer and photonic transmitter in a single devcie. When serving as a photonic mixer under bias modulation operation, the demonstrated device can achieve a -2.4dB internal-conversion-gain at 106GHz while serving as a photonic transmitter we have a maximum detected power at 106GHz of around -14.1dBm with an output photocurrent of 30mA output photocurrent. Finally, we realize 1.25Gbit/s wireless BPSK data transmission bases on this novel device. The measured eye diagram and error vextor magnitude indicates the suitability of the NBTU-PD for application to W-band ROF communication systems.
關鍵字(中) ★ 射頻光纖系統
★ 光二極體
★ W頻帶
★ 近彈道傳輸
關鍵字(英) ★ radio-over-fiber
★ photodiode
★ W-band
★ near-ballistic transport
論文目次 Table of contents
摘要........................................................................................................................i
Abstract ...............................................................................................................iii
誌謝....................................................................................................................... v
Table of contents .................................................................................................vi
List of tables ......................................................................................................viii
List of figures ......................................................................................................ix
Chapter 1 Introduction ....................................................................................... 1
1-1 Optical Communication............................................................................... 1
1-2 Structures of PD........................................................................................... 5
1-3 Dissertation Organization.......................................................................... 17
Chapter 2 Edge-illuminated NBUTC-PD ....................................................... 18
2-1 Introduction ............................................................................................... 18
2-2 Device Structures and Simulations............................................................ 19
2-3. Measurement Results................................................................................ 27
2-4. Summary................................................................................................... 31
Chapter 3 Characterization of NBUTC-PD by Equivalent Circuit Model
Extration............................................................................................................. 32
3-1 Introduction ............................................................................................... 32
3-2 Measuremwnt system and results.............................................................. 32
3-3 Modeling Results and Characteristic Analyze .......................................... 35
3-4 Summary.................................................................................................... 44
Chapter 4 Back-illuminated NBUTC-PD for W-Band Application ............. 45
4-1 Introduction ............................................................................................... 45
4-2 Device Structure and Measurement Setup ................................................ 46
4-3 Measurement Results and Device Modeling............................................. 50
4-4 Summary.................................................................................................... 56
Chapter 5 Optoelectronic Mixer Base on NBUTC-PD.................................. 57
5-1 Introduction ............................................................................................... 57
5-2 Design and Fabrication.............................................................................. 58
5-3 Measurement Results................................................................................. 60
5-4 Summary.................................................................................................... 66
Chapter 6 Photonic Transimitter/Mixer Base on NBUTC-PD ..................... 67
6-1 Introduction ............................................................................................... 67
6-2 Device Structure and Measurement Setup ................................................ 68
6-3 Measurement Results................................................................................. 70
6-4 Summary.................................................................................................... 78
Chapter 7 Conclusion and Future Work......................................................... 79
7-1 Conclusion ................................................................................................. 79
7-2 Future Work ............................................................................................... 81
References .......................................................................................................... 84
Appendix A......................................................................................................... 90
Appendix B......................................................................................................... 97
Appendix C ........................................................................................................ 99
Appendix D ......................................................................................................103
PUBLICTION LIST .......................................................................................105
參考文獻 [1] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[2] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp.709-727, Jul./Aug. 2004.
[3] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,” IEEE Photon. Technol. Lett., vol. 16, Mar., pp.864-866, 2004.
[4] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265–1281, July. 1999.
[5] J.-W. Shi, Y.-H. Liu, and C.-W. Liu, “Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors,” IEEE/OSA Journal of Lightwave Technology, vol. 22, pp. 1583-1590, June, 2004.
[6] M. K. Emsley, O. Dosunmu, and M. S. Unlu, “High-Speed Resonant-Cavity-Enhanced Silicon Photodetectors on Reflecting Silicon-On-Insulator Substrates,” IEEE Photon. Technol. Lett., vol. 14, pp. 519-521, April, 2002.
[7] S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very High-Responsivity Evanescently Coupled Photodiodes Integrating a Short Planar Multimode Waveguide for High-Speed Applications,” IEEE Photon. Technol. Lett., vol. 15, pp.1761-1763, Dec., 2003
[8] X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., vol. 16, pp. 2326–2328, Oct. 2004.
[9] R. Sankaralingam, and P. Fay, “Drift-Enhanced Dual-Absorption PIN Photodiodes,” IEEE Photon. Technol. Lett., vol. 17, pp. 1513–1515, July. 2005.
[10] F. J. Effenberger and A. M. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightw. Technol., vol. 14, no. 8, pp. 1859–1864, Aug. 1996.
[11] Y. Muramoto and T. Ishibashi, “InP/InGaAs pin photodiode structure maximizing bandwidth and efficiency,” Electron. Lett., vol. 39, pp. 1749–1750, Nov. 2003.
[12] T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron., pp. 83–87, 1997.
[13] T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys., vol. 36, pp. 6263–6268, 1997.
[14] T. Furuta, H. Ito, and T. Ishibashi, “Photocurrent dynamics of uni-traveling-carrier and conventional pin-photodiodes,” Proc. Inst. Phys. Conf. Ser., no. 166, pp. 419–422, 2000.
[15] T. Ishibashi, “High speed heterostructure devices,” in Semiconductors and Semimetals. San Diego, CA: Academic, 1994, vol. 41, ch. 5, p. 333.
[16] E. S. Harmon, M. L. Lovejoy, M. R. Melloch, M. S. Lundstrom, D. Ritter, and R. A. Hamm, “Minority-carrier mobility enhancement in p+ InGaAs lattice matched to InP,” Appl. Phys. Lett., vol. 63, pp. 636–638,1993.
[17] K. Kato, S. Hata, K. Kawano, and A. Kozen, “Design of ultrawideband, high-sensitivity p-i-n photodetectors,” IEICE Trans. Electron., vol. E76-C, pp. 214–221, 1993.
[18] H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “Zero-bias high-speed and high-output-voltage operation of cascade-twin uni-travelling-carrier photodiode,” Electron. Lett., vol. 36, pp. 2034–2036, Nov. 2000.
[19] K. Kato, “Ultrawide-Band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1265–1281, Jul. 1999.
[20] S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett., vol. 15, no. 12, pp. 1761–1763, Dec. 2003.
[21] F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “A asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 845–847, Aug. 2001.
[22] X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A partially depleted absorber photodiode with graded doping injection regions,” IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2326–2328, Oct. 2004.
[23] Y. Muramoto and T. Ishibashi, “InP/InGaAs pin photodiode structure maximizing bandwidth and efficiency,” Electron. Lett., vol. 39, no. 24, 27, pp. 1749–1750, Nov. 2003.
[24] N. Shimizu, N.Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs unitraveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz,” IEEE Photon. Technol. Lett., vol. 10, no. 3, pp. 412–414, Mar. 1998.
[25] T. Ishibashi and Y. Yamauchi, “A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure,” IEEE Trans. Electron Devices, vol. 35, no. 4, pp. 401–404, Apr. 1988.
[26] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Singapore: World Scientific, 1996.
[27] J.-W Pan, J.-L Shieh, J.-H Gau, and J.-I Chyi, “The study of the optical properties of In0.52(AlxGa1-x)0.48As by variable angle spectroscopic ellipsometry,” in Proc. Indium Phosphide and Related Materials (IPRM) Conf., May 1995, pp. 245–248.
[28] M. Achouche, V. Magnin, J. Harari, F. Lelarge, E. Derouin, C. Jany, D. Carpentier, F. Blache, and D. Decoster, “High performance evanescent edge coupled waveguide unitraveling-carrier photodiodes for >40-Gb/s optical receivers,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 584–586, Feb. 2004.
[29] Y.-S.Wu, J.-W. Shi, J.-Y.Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R. Xuan, “High performance evanescently edge coupled photodiodes with partially p-doped photoabsorption layer at 1.55-?m wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 878–880, Apr. 2005.
[30] A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturizedwaveguide-integrated p-i-n photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2152–2154, Oct. 2005.
[31] Y.-S. Wu, P.-H. Chiu, and J.-W. Shi, “High-speed and high-power performance of a dual-step evanescently-coupled uni-traveling-carrier photodiode at a 1.55 ?m avelength,” in Proc. OFC 2007, Anaheim, CA, Mar. 2007, Paper OThG1.
[32] W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y.-J. Chan, “The monolithic integration of a wavelength-demultiplexer with evanescently-coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1433–1435, Oct. 1, 2007.
[33] J.-W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J.-I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs–AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830 nm wavelength,” Appl. Phys. Lett., vol. 89, p. 053512, 2006.
[34] S. Demiguel, X. Li, N. Li, H. Chen, J. C. Campbell, J. Wei, and A. Anselm, “High-responsivity high-speed and high-power partially depleted absorber waveguide photodiodes with relaxed coupling tolerances,” in Proc. OFC 2005, Anaheim, CA, Mar. 2005, Paper OFM2.
[35] A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz Wireless Link Using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-Wave Signals” J. of Lightwave Technol., vol. 21, pp. 2145–2153, Oct., 2003.
[36] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
[37] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” J. of Lightwave Technol., vol. 24, pp. 1725–1731, April. 2006.
[38] J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-Speed, High-Responsivity, and High-Power Performance of Near-Ballistic Uni-Traveling-Carrier Photodiode at 1.55-μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, pp. 1929-1931, Sep., 2005.
[39] P. Debie and L. Martens, “Accurate Error Correction Technique for On-Chip Lightwave Measurements of Optoelectronic Devices,” in IEEE MTT-S International Microwave Symposium Digest, San Diego, pp. 1589-1592, May, 1994.
[40] Integrated Systems Engineering AG, Zurich, Switzerland, DESSIS-ISE release 7.5, 2002.
[41] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55?m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, April, 2006.
[42] G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “A Time-Delay Equivalent-Circuit Model of Ultrafast p-i-n Photodiodes,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1227-1233, April, 2003.
[43] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave Photodetector Design and Measurements,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 2, pp. 622-629, Sep., 1996.
[44] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave Photodetector Theory,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1310-1319, Aug., 1997.
[45] H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimeter wave generation at 100GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.-Optoelectron., vol. 150, pp. 138-142, April, 2003.
[46] T. H. Stievater and K. J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett., vol. 16, pp. 239-241, Jan., 2004.
[47] J.-W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J.-I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs-AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830nm wavelength” Appl. Phys. Lett, vol. 89, pp.053512, 2006.
[48] William Liu, Handbook of III-V Heterojunction Bipolar Transistors, chapter 9, A Wiley-Interscience, New York, 1998.
[49] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore, 1996.
[50] M. Tsuchiya, and T. Hosida, “Nonlinear Photodetection Scheme and Its System Applications to Fiber-Optic Millimeter-Wave Wireless Down-Links” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1342-1350, July, 1999.
[51] E. Lach and K. Schuh, “Recent Advances in Ultrahigh Bit Rate ETDM Transmission Systems,” J. Lightwave Technol., vol. 24, pp. 4455-4467, Dec., 2006.
[52] Andreas Beling, Heinz-Gunter Bach, Gebre Giorgis Mekonnen, Reinhard Kunkel, and Derlef Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Quantum Electron., vol. 13, no. 1, pp. 15-21, Jan./Feb. 2007.
[53] S. R. Cho, J. Kim, K. S. Oh, S. K. Yang, J. M. Baek, D. H. Jang, T. I. Kim, and H. Jeon, “Enhanced Optical Coupling Performance in an InGaAs Photodidoe Integarted With Wet-Etched Microlens,” IEEE Photon. Technol. Lett., vol. 14, pp. 378-380, March, 2002.
[54] M. Makiuchi, M. Norimatsu, C. Sakurai, K. Kondo, N. Yamamoto, and M. Yano, “Flip-Chip Planar GaInAs/InP p-i-n Photodiodes-Fabrication and Characteristics,” J. of Lightwave Technol., vol. 13, pp. 2270-2275, Nov., 1995.
[55] T. Ishibashi, “Nonequilibrium Electron Transport HBTs,” IEEE Trans. On Electron Devices, vol. 48, pp. 2595-2604, Nov., 2001.
[56] Andreas Beling, Heinz-Gunter Bach, Gebre Giorgis Mekonnen, Reinhard Kunkel, and Detlef Schmidt, “Miniaturized waveguide-integrated p-i-n photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photon. Technol. Lett., vol. 17, pp. 2152-2154, Oct., 2005.
[57] J.-H. Seo, C.-S. Choi, W.-Y. Choi, Y.-S. Kang, Y.-D. Chung, and J. Kim “Remote Optoelectronic Frequency Down-Conversion Using 60-GHz Optical Heterodyne Signals and an Electroabsorption Modulator,” IEEE Photon. Technol. Lett., vol. 17, pp.1073-1075, May, 2005.
[58] J.-Y. Kim, C.-S. Choi, W.-Y. Choi, H. Kamitsuna, M. Ida, and K. Kurishima, “Characteristics of InP-InGaAs HPT-Based Optically Injection-Locked Self-Oscillating Optoelectronic Mixers and Their Influence on Radio-Over-Fiber System Performance,” IEEE Photon. Technol. Lett., vol. 19, pp.155-157, Feb., 2007.
[59] C. P. Liu, A. J. Seeds, and D. Wake, “Two-Terminal Edge-Coupled InP/InGaAs Heterojunction Phototransistor Optoelectronic Mixer,” IEEE Microwave and Guided Wave Lett., vol. 7, pp.72-74, March, 1997.
[60] J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, W.-Y. Choi, “Conversion Efficiency Characteristics of Cascaded SOA-EAM Frequency Up/Down-Converters,” Int. Topical Meeting Microwave Photon., pp.107-110, Oct., 2005.
[61] A. J. Seeds and B. Lenior, “Avalanche Diode Harmonic Optoelectronic Mixer,” Proc. Inst. Elect. Eng., vol. 133, pt. J, pp. 353-357, Dec., 1986.
[62] H. Kamitsuna, K. Ishii, T. Shibata, K. Kurishima, and M. Ida, “A 43-Gb/s Clock and Data Recovery OEIC Integrating an InP-InGaAs HPT Oscillator with an HBT Decesion Circuit,” IEEE J. Select. Topics Quantum Electron., vol. 10, pp. 673-678, July/Aug., 2004.
[63] Y.-S. Lin, M.-S. Hsu, C.-H. Wang, and C. H. Chen, "Millimeter-wave coplanar-waveguide parallel-coupled bandpass filters with lumped-element K-inverters," in 35th European Microwave Conference Proceedings, 2005, pp. 829-832.
[64] Y.-S. Wu, C.-C. Chu, J.-W. Shi, J. M. Kuo and Y. C. Kao “Optoelectronic Mixer with Low Up-conversion Loss and Wide Up-conversion Bandwidth by Use of Flip-Chip Bonding Near-Ballistic Uni-Traveling-Carrier Photodiode and Coupled-Line Filter,” to be published in Proc. OFC 2008, San Diego, CA, USA, Feb., 2008, pp. JThA38.
[65] S. Malyshev, and A. Chizh,“Optoelectronic mixer for radio-on-fiber systems” in Proc. Int. Microwave Conference, European pp. 107–110., Oct. 2005.
[66] C. P. Liu, A. J. Seeds, Y. Betser, V. Sidorov, D. Ritter,and A. Madjar, “Two-Tone Third-Order Intermodulation Distortion Characteristics of an HBT Optoelectronic Mixer Using a Two-Laser Approach,” Int. Topical Meeting Microwave Photon., MWP ’99, vol. 1, pp. 87-90, Nov., 1999.
[67] G. Gonzalez, MICROWAVE TRANSISTOR AMPLIFIERS Analysis and Design, Second Edition, Prentice Hall, 1997, Ch. 4, pp. 362-363.
[68] K. Ohata, K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguchi, K. Ikeda, and N. Takahashi, “1.25 Gbps wireless Gb Ethernet link at 60 GHz-band,” IEEE MTT-S Int. Microwave Symp. Dig., 2003, vol. 1, pp. 373–376.
[69] A. Hirata, H. Ishii, and T. Nagatsuma, “Design and Characterization of a 120-GHz Millimeter-Wave Antenna for Integrated Photonic Transmitters,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2157-2162, Nov. 2001.
[70] H.-G. Bach, R. Kunkel, G. G. Mekonnen, D. Pech, T. Rosin, D. Schmidt, T. Gaertner, and R. Zhang, “Integration Potential of Waveguide-integrated Photodiodes: Self-powered Photodetectors and sub-THz pin-Antennas,” Proc. OFC 2008, San Diego, CA, USA, Feb., 2008, pp. OMK1.
[71] A. S. Macedo and E. S. Sousa, “Antenna-Sector Time-Division Multiple Access for Broadband Indoor Wireless Systems,” IEEE J. on Selected Areas in Communications, vol. 16, pp. 937-952, Aug., 1998.
[72] G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proceedings of IEEE, vol. 80, pp. 1748-1770, 1992.
[73] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, “A broadband planar quasi-Yagi antenna,” IEEE Trans. on Antennas and Propagation, vol. 50, pp. 1158-1160, Aug., 2002.
[74] J.-W. Shi, Y.-S. Wu, and Y.-S. Lin, “Near-Ballistic Uni-Traveling-Carrier Photodiode Based V-band Optoelectronic Mixers with Internal Up-Conversion-Gain, Wide Modulation Bandwidth, and Very High Operation Current Performance,” IEEE Photon. Technol. Lett., vol. 20, pp. 939-941, June, 2008.
[75] Y.-S. Wu and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes at W-Band” IEEE Photon. Technol. Lett., vol. 20, pp. 1160-1162, July, 2008.
[76] J. Sor, Y. Qian, and T. Itoh, “Miniature low-loss CPW periodic structures for filter applications,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 12, pp. 2336–40, Dec. 2001.
[77] C.-T. Lin, P.-T. Shih, Jason Chen, W.-Q. Xue, P.-C. Peng, and Sien Chi, “Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering” IEEE Photon. Technol. Lett., vol. 20, pp. 1027-1029, Jun., 2008.
[78] B. Razavi, RF Microelectronics, First Edition, Prentice Hall, 1997, Ch. 5, pp. 122-137.
[79] Nakajima F., Furuta T. and Ito H. “High-power continuous-terahertz-wave generation using resonant-antennaintegrated uni-travelling-carrier photodiode”, IEEE Electron. Lett., vol. 40, pp. 1297-1298, Sep., 2004.
[80] J.Winters, “On the capacity of radio communication systems with diversity in a Rayleigh fading environment,” IEEE J. Select. Areas Commun., vol. 5, pp. 871–878, June 1987.
[81] G. J. Foschini, “Layered space-time architecture for wireless communication in fading environments when using multi-element antennas,” Bell Labs Tech. J., pp. 41–59, 1996.
[82] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecomm. ETT, vol. 10, no. 6, pp. 585–596, Nov. 1999.
[83] P. R. Grajek, B. Schoenlinner and G. M. Rebeiz,“A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Antennas Propag. Mag., vol. 52, pp. 1257–1261, May 2004.
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2008-9-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明