博碩士論文 945401016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.13.96
姓名 陳翔傑(Hsiang-Chieh Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於模糊邏輯之影像前處理技術用於雜訊去除與影像解析度增強
(Fuzzy Based Image Pre-Processing Techniques for Noise Removal and Resolution Enhancement)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在電腦視覺與影像辨識等領域之相關應用中,影像處理技術總是扮演著重要的角色,而影像前處理階段更會直接影響後續的結果與效能,本論文即是探討影像脈衝雜訊去除 (impulse noise removal) 與影像解析度增強 (image resolution enhancement) 等重要技術。較佳的前處理技術通常亦能提供更完善的結果給後續的處理步驟,然而,面對千變萬化的數位影像,卻找不到一個理論或是公式推導,可以直接適用於所有的情況,而眾人所熟知的模糊邏輯 (fuzzy logics) 相對於傳統數學模型,對於不確定性 (uncertainty) 更具有彈性,尤其是針對未知系統的近似與識別。因此,本篇論文提出了利用模糊邏輯的知識與規則,改善了傳統前處理技術的缺點,提供更好的結果。在雜訊去除中,本文所提出的模糊推論系統可得到一雜訊程度值,將可用於偵測影像中單一像素點是否為脈衝雜訊,若是則利用中值濾波器去除之,反之則保留。在影像解析度增強部份,本論文提出了兩種不同的空間域中影像內插演算法,適度地結合局部區域的梯度值與傳統線性內插的權重值,於影像中較為複雜、細節較多的區域,保留了更清楚的對比,而不至於破壞了影像中的邊緣與線條。第三章所提出的兩階段內插法可針對整數倍數的放大倍率使用,並採用邊緣的方向資訊,於內插後的影像可得較佳的方向性,延伸原始影像中的線條。第四章則是提供了更能廣為使用的內插法,可用於各種不同的放大倍數,不限制於整數倍數。由每一章中所提供的模擬結果可以觀察出本論文所提出之方法的確大大地改善了傳統方法的效果,不論是從每一次的實驗數據,亦或是實際去觀察套用於許多測試圖片的真實效果,本論文所開發的影像前處理技術確實在雜訊去除與影像的解析度增強,具有較好的效果,也直接影響了後續的影像處理技術。
摘要(英) Fundamental to numerous digital imaging applications and systems; image pre-processing techniques are widely researched in many engineering fields such as computer vision, industrial automation and pattern recognition. Some commonly used pre-processing techniques, including impulse noise reduction and image quality enhancement, are introduced in this dissertation. These pre-processing techniques that have good performance often provide highly-qualified results for the consequent imaging steps. However, neither mathematical definition nor derivation is given to deal with all types of images. It is very difficult to design and implement a critical image pre-processing method that is applicable to all possible image contents. As well-known that fuzzy logic is extensively adopted in locating and identifying models due to its capability to consider the uncertainties of unknown systems. Accordingly this dissertation tries to design several fuzzy-based image pre-processing methods such as impulse noise removal and image spatial resolution enhancement, so-called image zooming or enlargement, for improving the performance of those traditional methods. In impulse noise removal, the noisy pixels are first detected based on fuzzy logic and are then eliminated by a novel weighted median filter. In image zooming, we first propose a two-stage image interpolation approach with an integer-valued magnification factor. In addition, the parameters in employed fuzzy system are determined by using particle swarm optimization procedure. Finally, a more general image interpolation method and its modified version are presented to deal with the non-integer magnification factor. As demonstrated in the simulation results in their corresponding chapters, the proposed methods, including impulse noise removal and image interpolation algorithms, actually achieved good efficiency and accuracy.
關鍵字(中) ★ 模糊邏輯
★ 影像內插
★ 雜訊去除
★ 影像處理
關鍵字(英) ★ fuzzy logic
★ image interpolation
★ noise removal
★ image processing
論文目次 摘要............i
誌謝............ii
Abstract............iv
Contents............v
List of Figures............viii
List of Tables............xi
Chapter 1 Introduction............1
1.1 Background and motivation............1
1.2 Review of previous works............2
1.3 Main organization of this dissertation............6
Chapter 2 Impulse noise removal by combining local gradients and fuzzy logics............8
2.1 Preliminaries ............8
2.1.1 Impulse noise model............8
2.1.2 Review of basic and neighboring gradients............9
2.2 Main algorithm of the proposed method............12
2.2.1 Structure of the employed fuzzy inference system............12
2.2.2 Pixel classification............15
2.2.3 Noise filtering scheme............17
2.3 Further analyses............19
2.3.1 Determination of fuzzy membership functions............19
2.3.2 Execution time reduction............20
2.4 Experimental simulation............21
2.4.1 Numerical comparisons............22
2.4.2 Perceptual results............26
2.4.3 Comparison of noise identification............31
2.5 Concluding remarks............33
Chapter 3 Fuzzy based two-stage interpolation method for image zooming with an integer-valued magnification factor............34
3.1 Basic concepts of image zooming............34
3.2 Main procedure of the two-stage interpolation method............35
3.2.1 The first stage: Estimation of aligned pixels............35
3.2.2 The second stage: Estimation of interior pixels............39
3.3 Optimization of parameters of fuzzy inference system............43
3.4 Experimental results............49
3.5 Concluding remarks............51
Chapter 4 Image resolution enhancement and enlargement using fuzzy-adapted linear interpolation approach............52
4.1 Preliminaries............52
4.1.1 Review of linear interpolation............52
4.1.2 Problem description............53
4.2 Main algorithm of the proposed method............54
4.2.1 Structure of the proposed fuzzy inference system............54
4.2.2 The fuzzy-adapted distance............57
4.2.3 The proposed FALI and MFALI approaches............59
4.3 Experimental results and discussions............63
4.3.1 Determination of critical parameters............63
4.3.2 Measurements of execution time............66
4.4.3 Comparisons with other methods 68
4.4.4 Improvements on interpolation methods using fuzzy-adapted distance............75
4.4 Concluding remarks............75
Chapter 5 Conclusion and future works............77
5.1 A brief conclusion............77
5.2 Future works............78
References............80
Publication list............88
參考文獻 [1] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Prentice Hall, 2008.
[2] T. Sun and Y. Neuvo, “Detail-preserving median based filters in image processing,” Pattern Recognition Letters, vol. 15, pp. 341-347, 1994.
[3] E. Abreu, M. Lightstone, S.K. Mitra and K. Arakawa, “A new efficient approach for the removal of impulse noise from highly corrupted images,” IEEE Transactions on Image Processing, vol. 5, pp. 1012-1025, 1996.
[4] W.Y. Han and J.C. Lin, “Minimum-maximum exclusive mean (MMEM) filter to remove impulse noise from highly corrupted images,” Electronics Letters, vol. 33, pp. 124-125, 1997.
[5] T. Chen, K.K. Ma and L.H. Chen, “Tri-state median filter for image denoising,” IEEE Transactions on Image Processing, vol. 8, pp. 1834-1838, 1999.
[6] T. Chen and H.R. Wu, “Adaptive impulse detection using center-weighted median filters,” IEEE Signal Processing Letters, vol. 8, pp. 1-3, 2001.
[7] S. Zhang and M.A. Karim, “A new impulse detector for switching median filters,” IEEE Signal Processing Letters, vol. 9, pp. 360-363, 2002.
[8] I. Aizenberg and C. Butakoff, “Effective impulse detector based on rank-order criteria,” IEEE Signal Processing Letters, vol. 11, pp. 363-366, 2004.
[9] R. Garnett, T. Huegerich, C. Chui and W. He, “A universal noise removal algorithm with an impulse detector,” IEEE Transactions on Image Processing, vol. 14, pp. 1747-1754, 2005.
[10] J.B. Bednar and T.L. Watt, “Alpha-trimmed means and their relationship to median filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, pp. 145-153, 1984.
[11] R.H. Chan, C. Hu and M. Nikolova, “An iterative procedure for removing random-valued impulse noise,” IEEE Signal Processing Letters, vol. 11, pp. 921-924, 2004.
[12] T. Chen and H.R. Wu, “Space variant median filters for the restoration of impulse noise corrupted images,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 48, pp. 784-789, 2001.
[13] J.Y. Chang and J.L. Chen, “Classifier-augmented median filters for image restoration,” IEEE Transactions on Instrumentation and Measurement, vol. 53, pp. 351-356, 2004.
[14] V. Crnojević, V. Šenk and Ž. Trpovski, “Advanced impulse detection based on pixel-wise MAD,” IEEE Signal Processing Letters, vol. 11, pp. 589-592, 2004.
[15] H.L. Eng and K.K. Ma, “Noise adaptive soft-switching median filter,” IEEE Transactions on Image Processing, vol. 10, pp. 242-251, 2001.
[16] S.J. Ko and Y.H. Lee, “Center weighted median filters and their applications to image enhancement,” IEEE Transactions on Circuits and Systems, vol. 38, pp. 984-993, 1991.
[17] W. Luo, “An efficient detail-preserving approach for removing impulse noise in images,” IEEE Signal Processing Letters, vol. 13, pp. 413-416, 2006.
[18] W. Luo, “Efficient removal of impulse noise from digital images,” IEEE Transactions on Consumer Electronics, vol. 52, pp. 523-527, 2006.
[19] P.E. Ng and K.K. Ma, “A switching median filter with boundary discriminate noise detection for extremely corrupted images,” IEEE Transactions on Image Processing, vol. 15, pp. 1506-1516, 2005.
[20] G. Pok, J.C. Liu and A.S. Nair, “Selective removal of impulse noise based on homogeneity level information,” IEEE Transactions on Image Processing, vol. 12, pp. 85-92, 2003.
[21] F. Russo, “Impulse noise cancellation in image data using a two-output nonlinear filter,” Measurement, vol. 36, pp. 205-213, 2004.
[22] Z. Wang and D. Zhang, “Restoration of impulse noise corrupted images using long-range correlation,” IEEE Signal Processing Letters, vol. 5, pp. 4-7, 1998.
[23] Z. Wang and D. Zhang, “Progressive switching median filter for the removal of impulse noise from highly corrupted images,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 46, pp. 78-80, 1999.
[24] P.S. Windyga, “Fast impulse noise removal,” IEEE Transactions on Image Processing, vol. 10, pp. 173-179, 2001.
[25] X. Xu, E.L. Miller, D. Chen and M. Sarhadi, “Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images,” IEEE Transactions on Image Processing, vol. 13, pp. 238-247, 2004.
[26] S.Q. Yuan and Y.H. Tan, “Difference-type noise detector for adaptive median filter,” Electronics Letters, vol. 42, pp. 454-455, 2006.
[27] F. Russo and G. Ramponi, “A fuzzy filter for images corrupted by impulse noise,” IEEE Signal Processing Letters, vol. 3, pp. 168-170, 1996.
[28] F. Russo, “An image enhancement technique combining sharpening and noise reduction,” IEEE Transactions on Instrumentation and Measurement, vol. 51, pp. 824-828, 2002.
[29] C.S. Lee, Y.H. Kuo and P.T. Yu, “Weighted fuzzy mean filters for image processing,” Fuzzy Sets and Systems, vol. 89, pp. 157-180, 1997.
[30] M. Mancuso, R.D. Luca, R. Poluzzi and G.G. Rizzotto, “A fuzzy decision directed filter for impulsive noise reduction,” Fuzzy Sets and Systems, vol. 77, pp. 111-116, 1996.
[31] A. Toprak and İ. Güler, “Impulse noise reduction in medical images with the use of switch mode fuzzy adaptive median filter,” Digital Signal Processing, vol. 17, pp. 711-723, 2007.
[32] H. Xu, G. Zhu, H. Peng and D. Wang, “Adaptive fuzzy switching filter for images corrupted by impulse noise,” Pattern Recognition Letters, vol. 25, pp. 1657-1663, 2004.
[33] F. Farbiz, M.B. Menhaj, S.A. Motamedi and M.T. Hagan, “A new fuzzy logic filter for image enhancement,” IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, vol. 30, pp. 110-119, 2000.
[34] C.S. Lee, S.M. Guo and C.Y. Hsu, “Genetic-based fuzzy image filter and its application to image processing,” IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, vol. 35, pp. 694-711, 2005.
[35] D.V. De Ville, M. Nachtegael, D.V. der Weken, E.E. Kerre, W. Philips and I. Lemahieu, “Noise reduction by fuzzy image filtering,” IEEE Transactions on Fuzzy Systems, vol. 11, pp. 429-436, 2003.
[36] M.E. Yüksel, “A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise,” IEEE Transactions on Image Processing, vol. 15, pp. 928-936, 2006.
[37] M.E. Yüksel and E. Beşdok, “A simple neuron-fuzzy impulse detector for efficient blur reduction of impulse noise removal operators for digital images,” IEEE Transactions on Fuzzy Systems, vol. 12, pp. 854-865, 2004.
[38] S. Schulte, M. Nachtegael, V.D. Witte, D.V. der Weken and E.E. Kerre, “A fuzzy impulse noise detection and reduction method,” IEEE Transactions on Image Processing, vol. 15, pp. 1153-1162, 2006.
[39] T.M. Lehmann, C. Gönner and K. Spitzer, “Survey: interpolation methods in medical image processing,” IEEE Transactions on Medical Imaging, vol. 18, pp. 1049-1075, 1999.
[40] P. Thévenaz, T. Blu, and M. Unser, “Interpolation revisited,” IEEE Transactions on Medical Imaging, vol. 19, no. 7, pp. 739-758, 2000.
[41] R.G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, pp. 1153-1160, 1981.
[42] S. Carrato, G. Ramponi and S. Marsi, “A simple edge-sensitive image interpolation filter,” in Proceedings of International Conference on Image Processing, vol. 3, pp. 711-714, 1996.
[43] S. Carrato and L. Tenze, “A high quality 2 image interpolator,” IEEE Signal Processing Letters, vol. 7, pp. 132-134, 2000.
[44] G. Ramponi, “Warped distance for space-variant linear image interpolation,” IEEE Transactions on Image Processing, vol. 8, pp. 629-639, 1999.
[45] X. Li and M.T. Orchard, “New edge-directed interpolation,” IEEE Transactions on Image Processing, vol. 10, pp. 1521-1527, 2001.
[46] J.W. Huang and H.S. Lee, “Adaptive image interpolation based on local gradient features,” IEEE Signal Processing Letters, vol. 11, pp. 359-362, 2004.
[47] L. Zhang and X. Wu, “An edge-guided image interpolation algorithm via directional filtering and data fusion,” IEEE Transactions on Image Processing, vol. 15, pp. 2226-2238, 2006.
[48] H. Yoo, “Closed-form least-squares technique for adaptive linear image interpolation,” Electronics Letters, vol. 43, pp. 210-212, 2007.
[49] X. Zhang and X. Wu, “Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation,” IEEE Transactions on Image Processing, vol. 17, no. 6, pp. 887-896, 2008.
[50] F. Aràndiga, R. Donat and P. Mulet, “Adaptive interpolation of images,” Signal Processing, vol. 83, pp. 459-464, 2003.
[51] Q. Wang and R.K. Ward, “A new orientation-adaptive interpolation method,” IEEE Transactions on Image Processing, vol. 16, pp. 889-900, 2007.
[52] M.J. Chen, C.H. Huang and W.L. Lee, “A fast edge-oriented algorithm for image interpolation,” Image and Vision Computing, vol. 23, pp. 791-798, 2005.
[53] S.E. El-Khamy, M.M. Hadhoud, M.I. Dessouky, B.M. Salam and F.E. Abd El-Samie, “Efficient implementation of image interpolation as an inverse problem,” Digital Signal Processing, vol. 15, pp. 137-152, 2005.
[54] S.E. Reichenbach and F. Geng, “Two-dimensional cubic convolution,” IEEE Transactions on Image Processing, vol. 12, pp. 857-865, 2003.
[55] S. Battiato, G. Gallo and F. Stanco, “A locally adaptive zooming algorithm for digital images,” Image and Vision Computing, vol. 20, pp. 805-812, 2002.
[56] Y.J. Cha and S.J. Kim, “The error-amended sharp edge (EASE) scheme for image zooming,” IEEE Transactions on Image Processing, vol. 16, pp. 1496-1505, 2007.
[57] J.Z. Shi and S.E. Reichenbach, “Image interpolation by two-dimensional parametric cubic convolution,” IEEE Transactions on Image Processing, vol. 15, pp. 1857-1870, 2006.
[58] N. Suetake, M. Sakano and E. Uchino, “Image enlargement based on self-produced codebook,” Electronics Letters, vol. 43, pp. 152-153, 2007.
[59] E. Meijering and M. Unser, “A note on cubic convolution interpolation,” IEEE Transactions on Image Processing, vol. 12, pp. 477-479, 2003.
[60] T. Hermosilla, E. Bermejo, A. Balaguer, and L.A. Ruiz, “Non-linear fourth-order image interpolation for subpixel edge detection and localization,” Image and Vision Computing, vol. 26, no. 9, pp. 1240-1248, 2008.
[61] A. Amanatiadis, I. Andreadis, and K. Konstantinidis, “Design and implementation of a fuzzy area-based image-scaling technique,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 8, pp. 1504-1513, 2008.
[62] N. Plaziac, “Image interpolation using neural networks,” IEEE Transactions on Image Processing, vol. 8, pp. 1647-1651, 1999.
[63] T. Sigitani, Y. Iiguni and H. Maeda, “Image interpolation for progressive transmission by using radial basis function networks,” IEEE Transactions on Neural Networks, vol. 10, pp. 381-390, 1999.
[64] L. Ma, Y. Shen, and J. Ma, “Local spatial properties based image interpolation scheme using SVMs,” Journal of System Engineering and Electronics, vol. 19, no. 3, pp. 618-623, 2008.
[65] D.D. Muresan and T.W. Parks, “Adaptively quadratic (AQua) image interpolation,” IEEE Transactions on Image Processing, vol. 13, pp. 690-698, 2004.
[66] S.H. Hong, R.H. Park, S.J. Yang, and J.Y. Kim, “Image interpolation using interpolative classified vector quantization,” Image and Vision Computing, vol. 26, no. 2, pp. 228-239, 2008.
[67] D.G. Sheppard, K. Panchapakesan, A. Bilgin, B.R. Hunt and M.W. Marcellin, “Lapped nonlinear interpolative vector quantization and image super-resolution,” IEEE Transactions on Image Processing, vol. 9, pp. 295-298, 2000.
[68] W.K. Carey, D.B. Chuang and S.S. Hemami, “Regularity-preserving image interpolation,” IEEE Transactions on Image Processing, vol. 8, pp. 1293-1297, 1999.
[69] A. Temizel and T. Vlachos, “Wavelet domain image resolution enhancement,” IEE Proceedings of Vision Image Signal Processing, vol. 153, pp. 25-30, 2006.
[70] S.G. Chang, Z. Cvetković and M. Vetterli, “Locally adaptive wavelet-based image interpolation,” IEEE Transactions on Image Processing, vol. 15, pp. 1471-1485, 2006.
[71] G.J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, 1995
[72] S. Schulte, V.D. Witte, M. Nachtegael, D.V. der Weken and E.E. Kerre, “Fuzzy random impulse noise reduction method,” Fuzzy Sets and Systems, vol. 158, pp. 270-283, 2007.
[73] S. Schulte, V.D. Witte, M. Nachtegael, D.V. der Weken and E.E. Kerre, “A Fuzzy Two-step Filter for Impulse Noise Reduction From Colour Images,” IEEE Transactions on Image Processing, vol. 15, pp. 3568-3579, 2006.
[74] J. Kennedy, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, Australia, November 1995.
[75] R. Eberhart, and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of The Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, Japan, October 1995.
[76] M. Schatzman, Numerical Analysis: A Mathematical Introduction. Oxford University Press, 2002
指導教授 王文俊(Wen-June Wang) 審核日期 2009-12-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明