博碩士論文 945401019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.138.174.174
姓名 邱培晉(Pei-chin Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 分子束磊晶成長銻化物高遷移率電晶體
(Molecular Beam Epitaxial Growth of Antimonide-based High Mobility Channel Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著半導體產業技術的演進,積體電路的元件尺寸越來越小,密度也越來越高。由於操作電壓並沒有隨著降低,造成嚴重散熱問題,為了能夠在低電壓與低功率下操作下仍然擁有好的元件特性,改以高遷移率材料作為通道材料是其中一種解決方式。在所有可能的新材料選項中,三五族化合物半導體被視為最有潛力的材料之一,而銻化物半導體具有低能隙與高遷移率的特性,特別受到矚目。然而缺乏高電洞遷移率之p型元件以及化合物半導體元件與矽基板的整合都是必須要克服的瓶頸。
為了解決上述問題,本研究聚焦於成長砷化銦/銻化鋁量子井高電子遷移率n型場效電晶體以及銻化銦鎵/銻化鋁量子井高電洞遷移率p型場效電晶體於砷化鎵基板上,再將這些結構整合在矽基板上,並製作在矽基板上之砷化銦量子井與銻化銦鎵量子井高遷移率電晶體。
藉由磊晶參數與緩衝層結構調整,此研究在砷化鎵基板上所成長的砷化銦量子井結構,最終可達到室溫下電子遷移率超過27,000 cm2/V•s;銻化銦鎵量子井之電洞遷移率則可超過1,000 cm2/V•s。為了整合這些通道特性良好的電晶體於矽基板上,此研究使用了銻化鋁/銻化鎵以及漸變式砷化鎵/銻砷化鎵/銻化鎵兩種異質結構作為起始緩衝層,並探討其對上層量子井結構特性之影響。實驗結果顯示銻化鋁可以在與矽基板的界面形成刃型差排以釋放應力,這樣的差排不會向上延伸影響量子井,然而卻有大量沿著基板傾斜方向分布的雙晶缺陷(twin),此缺陷造成量子井的成長不均勻以及載子散射,影響元件特性,除此之外這樣的緩衝層阻值過低,造成多層磊晶平行傳導的現象,影響霍爾效應量測結果。相對地,使用組成漸變式砷化鎵/銻砷化鎵/銻化鎵結構雖然表面粗糙度沒有改善,但是卻可以將雙晶缺陷以及部分差排阻擋在銻砷化鎵/銻化鎵界面以下,使上層之量子井具有良好的載子傳輸特性,並且增加緩衝層的電阻值,抑制平行傳導現象;此研究僅用兩微米厚的緩衝層,其電子遷移率在室溫下即可以達到18,100 cm2/V•s。
類似的組成漸變式砷化鎵/銻砷化鎵/銻化鋁緩衝層也被應用在矽基板上成長高電洞遷移率銻化銦鎵量子井。實驗顯示,雙晶缺陷對於銻化銦鎵量子井電晶體的元件特性的影響並不明顯,藉由量子井成長溫度的調整,量子井的電洞遷移率可高達838 cm2/V•s,這是目前已知在矽基板上磊晶成長三五族p型通道電晶體之最高遷移率。本校辛裕明教授團隊以此磊晶片成功開發出小線寬p型通道電晶體,在0.25微米閘極長度的元件上測得最大電流密度可達81 mA/mm (VGS=-1 V and VDS=3 V),轉導可達75 mS/mm (VGS=0.15 V,VDS=3 V)。
摘要(英) Along with the increase in device density of Si-based integrated circuits, power consumption and heat dissipation have become key issues that cannot be ignored any more. Replacing Si with high mobility materials to realize high performance transistors with low operating voltage and power consumption is thus a subject under extensive investigations. Among the materials under investigations, III-V compounds are considered one of the most promising candidates. Sb-based compounds have therefore received a lot of attention due to their high intrinsic carrier mobility and low bandgap. However, high performance p-channel transistors and the integration of Sb-based devices on Si substrates remain challenging. To explore the feasibility of the approach above, this work aims at the growth of high quality n-channel InAs/AlSb quantum-well (QW) and p-channel InGaSb/AlSb QW heterostructure field-effect transistors (HFETs) on GaAs and Si substrates by molecular beam epitaxy.
Through the adjustments in layer structures and growth parameters, InAs/AlSb QW HFETs grown on GaAs substrates show electron mobility greater than 27,000 cm2/V•s at room temperature. As for InGaSb/AlSb QW HFETs grown on GaAs substrates, hole mobility higher than 1,000 cm2/V•s at room temperature has also been achieved.
It is found that the buffer layers employed for the growth of InAs/AlSb QW HFETs on GaAs substrates do not give satisfactory results when used for the growth on Si substrates. In this study, AlSb/GaSb and GaAs/GaAsSb/GaSb are used as the initial buffer layer for the growth on Si substrates and how the buffer layer affect the properties of QW HFETs is explored. In the case of AlSb/GaSb buffer, there occur numerous edge dislocations, which do not propagate to the channel, at the AlSb/Si interface to accommodate the lattice mismatch. This buffer also generates numerous planar defects, i.e. twins, which deteriorate the growth of the InAs channel and the electrical properties of the transistors. Besides, parallel conduction of this buffer layer due to its low resistivity is observed. In contrast, the GaAs/GaAsSb/GaSb buffer layer can effectively block the planar defects at GaAsSb/GaSb interface and suppress parallel conduction of the buffer. As a result, the anisotropic transport behavior is greatly reduced. With an approximately 2 m-thick buffer layer, electron mobility as high as 18,100 cm2/V•s has been achieved on InAs/AlSb QWs grown on Si.
P-channel InGaSb/AlSb QW HFETs grown on Si with GaAs/GaAsSb/GaSb buffer layers are also investigated. The growth temperature of InGaSb/AlSb QW is found to be a key parameter for obtaining high hole mobility. By optimizing the growth temperature and layer structure, room-temperature hole mobility of 838 cm2/V•s with sheet carrier density of 9.5×1011 cm-2 has been reached. It is also found that the effects of twins on the electrical properties of InGaSb/AlSb QW HFETs are unobvious. In collaboration with Professor Yu-Ming Hsin, devices with a gate length of 0.25 m are fabricated and exhibit a maximum drain current of 81 mA/mm and a peak transconductance of 75 mS/mm.
關鍵字(中) ★ 異質電晶體
★ 矽基板
★ 銻化物
★ 砷化鎵
★ 銻化銦鎵
★ 量子井
關鍵字(英) ★ HFET
★ Si
★ Sb
★ InAs
★ InGaSb
★ QW
論文目次 Contents
論文摘要 I
Abstract III
致謝 V
Table captions VII
Figure captions VIII
Chapter 1 Introduction 1
1-1 Why Sb-based compound semiconductors 1
1-2 Organization of this dissertation 7
Chapter 2 Growth of Sb-based HFETs on GaAs substrates 8
2-1 Review of InAs/AlSb and InGaSb/AlSb QW HFETs 8
2-2 Growth of InAs/AlSb QW HFETs on GaAs substrates 12
2-3 Growth of InGaSb/AlSb QW HFETs on GaAs substrates 17
2-3-1 Effects of strain on hole mobility of Ga(In)Sb/AlSb QWs 17
2-3-2 Effects of doping spacer on the transport properties of InGaSb/AlSb QW HFETs 21
Chapter 3 Growth of InAs/AlSb QW HFETs on Si substrates 23
3-1 Introduction 23
3-2 Preparation of Si substrates 29
3-3 Growth of InAs/AlSb QW HFETs on Si by AlSb/GaSb and GaAs/GaAsSb/GaSb buffer layers 31
3-4 Device characteristics of InAs/AlSb QW HFETs grown on Si substrates 45
Chapter 4 Growth of InGaSb/AlSb QW HFETs on Si 50
4-1 Introduction 50
4-2 Growth of InGaSb/AlSb QW HFETs on Si by a GaAs/GaAsSb/AlSb buffer layer 51
4-3 Device characteristics of InGaSb/AlSb QW HFETs on Si substrates 59
References 65
Appendix A 80
Appendix B 82
Publication list 83
參考文獻 Reference
[1] D. J. Frank, "Power-constrained CMOS scaling limits," IBM Journal of Research and Development, vol. 46, pp. 235-244, 2002.
[2] ITRS, International Technology Working Groups, International Technology Roadmap for Semiconductors (ITRS 2013).
[3] R. Chau, "Benchmarking nanotechnology for high-performance and low power logic transistor applications," IEEE Transactions On Nanotechnology, vol. 4, pp. 153-158, 2005.
[4] J. A. del Alamo, "Nanometre-scale electronics with III-V compound semiconductors," Nature, vol. 479, pp. 317-23, Nov 17 2011.
[5] M. Bohr, "The evolution of scaling from the homogeneous era to the heterogeneous era," in IEDM Tech. Dig.,2011, pp. 1.1.1-1.1.6, 2011.
[6] R. Bijesh, H. Liu, H. Madan, D. Mohata, W. Li, N. V. Nguyen, D. Gundlach, C. A. Richter, J. Maier, K. Wang, T. Clarke, J. M. Fastenau, D. Loubychev, W. K. Liu, V. Narayanan, and S. Datta, "Demonstration of In0.9Ga0.1As/GaAs0.18Sb0.82 near broken-gap tunnel FET with ION=740μA/μm,GM=700μS/μm and gigahertz switching performance at VDS=0.5V," in IEDM Tech. Dig., 2013, pp. 687-688.,2013
[7] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, "Valley-selective circular dichroism of monolayer molybdenum disulphide," Nat Commun, vol. 3, p. 887, 2012.
[8] A. D. Franklin, M. Luisier, S. J. Han, G. Tulevski, C. M. Breslin, L. Gignac, M. S. Lundstrom, and W. Haensch, "Sub-10 nm carbon nanotube transistor," Nano Lett, vol. 12, pp. 758-62, Feb 8 2012.
[9] M. Radosavljevic, G. Dewey, J. M. Fastenau, J. Kavalieros, R. Kotlyar, B. C.-K., W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, and R. Chau, "Non-planar, multi-gate InGaAs quantum well field effect transistors with high-k gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications," in IEDM Tech. Dig., 2010, pp. 6.1.1-6.1.4, 2010.
[10] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, "High performance silicon nanowire field effect transistors," Nano Lett, vol. 3, pp. 149-152, 2003.
[11] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, p. 5815, 2001.
[12] D. L. Smith and C. Mailhiot, "Proposal for strained type II superlattice infrared detectors," Journal of Applied Physics, vol. 62, p. 2545, 1987.
[13] J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, "Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb," Journal of Applied Physics, vol. 80, pp. 1116-1127, 1996.
[14] O. V. Sulima and A. W. Bett, "Fabrication and simulation of GaSb thermophotovoltaic cells," Solar Energy Materials and Solar Cells, vol. 66, pp. 533-540, 2001.
[15] H. Kroemer, "The family (InAs, GaSb, AlSb) and its heterostructures: a selective review," Physica E: Low-dimensional Systems and Nanostructures, vol. 20, pp. 196-203, 2004.
[16] M. Levinshtein, S. Rumyantsev, and M. Shur “Handbook Series on Semiconductor Parameters” World Scientific, London, 1996
[17] A. Furukawa and M. Mizuta, "Hot-electron injection in AlGaSb/GaSb HBT-its relation to the conduction band structure of GaSb," IEEE Transactions on Electron Devices, vol. 36, p. 2602, 1989.
[18] C. R. Bolognesi, J. E. Bryce, and D. H. Chow, "InAs channel heterostructure-field effect transistors with InAs/AlSb short-period superlattice barriers," Applied Physics Letters, vol. 69, p. 3531, 1996.
[19] J. Bergman, G. Nagy, G. Sullivan, A. Ikhlassi, B. Brar, C. Kadow, L. Heng-Kuang, A. Gossard, and M. Rodwell, "Low-voltage, high-performance InAs/AlSb HEMTs with power gain above 100 GHz at 100 mV drain bias," Device Research Conference, 2004. 62nd DRC. Conference Digest, pp. 243-244, 2004..
[20] R. Magno, J. B. Boos, P. M. Campbell, B. R. Bennett, E. R. Glaser, B. P. Tinkham, M. G. Ancona, K. D. Hobart, D. Park, and N. A. Papanicolaou, "InAlAsSb∕InGaSb double heterojunction bipolar transistor," Electronics Letters, vol. 41, pp. 370, 2005.
[21] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, "Antimonide-based compound semiconductors for electronic devices: A review," Solid-State Electronics, vol. 49, pp. 1875-1895, 2005.
[22] B.-R. Wu, C. Liao, and K. Y. Cheng, "High quality InAsSb grown on InP substrates using AlSb∕AlAsSb buffer layers," Applied Physics Letters, vol. 92, p. 062111, 2008.
[23] T. Ashley, M. T. Emeny, D. G. Hayes, K. P. Hilton, R. Jefferies, J. O. Maclean, S. J. Smith, A. W. H. Tang, D. J. Wallis, and P. J. Webber, "High-performance InSb based quantum well field effect transistors for low-power dissipation applications," in IEDM Tech. Dig., 2009, pp. 1-4, 2009.
[24] S.-H. Chen, C.-M. Chang, P.-Y. Chiang, S.-Y. Wang, W.-H. Chang, and J.-I. Chyi, "DC characteristics of InAlAs/InGaAsSb/InGaAs double heterojunction bipolar transistors," IEEE Transactions on Electron Devices, vol. 57, pp. 3327-3332, 2010.
[25] N.-T. Yeh, P.-C. Chiu, J.-I. Chyi, F. Ren, and S. J. Pearton, "Sb-based semiconductors for low power electronics," Journal of Materials Chemistry C, vol. 1, p. 4616, 2013.
[26] A. Noudeviwa, Y. Roelens, F. Danneville, A. Olivier, N. Wichmann, N. Waldhoff, S. Lepilliet, G. Dambrine, L. Desplanque, X. Wallart, G. Moschetti, J. Grahn, and S. Bollaert, "Sb-HEMT: toward 100-mV cryogenic electronics," IEEE Transactions on Electron Devices, vol. 57, pp. 1903-1909, 2010.
[27] R. Tsai, J. B. Boos, B. R. Bennett, M. Lange, R. Grundbacher, C. Namba, P. H. Liu, J. Lee, M. Barsky, and A. Gutierrez, "275 GHz fMAX, 220 GHz fT AlSb/InAs HEMT technology," Device Research Conference, 2004. 62nd DRC. Conference Digest, pp. 12-13, 2004.
[28] R. Chau, S. Datta, and A. Majumdar, "Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications," Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC ′05. IEEE, p. 4., 2005.
[29] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, "High-performance 40 nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications," in IEDM Tech. Dig., 2008, pp. 727–730, 2008
[30] M. Passlack, H. Minghwei, J. P. Mannaerts, S. N. G. Chu, R. L. Opila, and N. Moriya, "In-situ Ga2O3 process for GaAs inversion/accumulation device and surface passivation applications," in IEDM Tech. Dig., 1995,pp. 383-386, 1995.
[31] S. Oktyabrsky and P. Ye, "Fundamentals of III-V Semiconductor MOSFETs," Springer, 2010.
[32] C.-A. Lin, M.-L. Huang, P.-C. Chiu, H.-K. Lin, J.-I. Chyi, T.-H. Chiang, W.-C. Lee, Y.-C. Chang, Y.-H. Chang, G. J. Brown, J. Kwo, and M. Hong, "InAs MOS devices passivated with molecular beam epitaxy-grown Gd2O3 dielectrics," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 30, p. 02B118, 2012.
[33] J. Nah, H. Fang, C. Wang, K. Takei, M. H. Lee, E. Plis, S. Krishna, and A. Javey, "III-V complementary metal-oxide-semiconductor electronics on silicon substrates," Nano Lett, vol. 12, pp. 3592-5, Jul 11 2012.
[34] J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, "Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping," Applied Physics Letters, vol. 91, p. 021114, 2007.
[35] C. Shu-Lu, P. B. Griffin, and J. D. Plummer, "Single-crystal GaAs and GaSb on insulator on bulk Si substrates based on rapid melt growth," IEEE Electron Device Letters, vol. 31, pp. 597-599, 2010.
[36] S. Datta, G. Dewey, J. M. Fastenau, M. K. Hudait, D. Loubychev, W. K. Liu, M. Radosavljevic, W. Rachmady, and R. Chau, "Ultrahigh-speed 0.5 V supply voltage In0.7Ga0.3As quantum-well transistors on silicon substrate," IEEE Electron Device Letters, vol. 28, pp. 685-687, 2007.
[37] L. Qiang, Z. Xiuju, T. Chak Wah, and K. M. Lau, "Material and device characteristics of metamorphic In0.53Ga0.47As MOSHEMTs grown on GaAs and Si substrates by MOCVD," IEEE Transactions on Electron Devices, vol. 60, pp. 4112-4118, 2013.
[38] C.-A. Chang, "Electron densities in InAs–AlSb quantum wells," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 2, p. 214, 1984.
[39] A. Nakagawa, H. Kroemer, and J. H. English, "Electrical properties and band offsets of InAs/AlSb n-N isotype heterojunctions grown on GaAs," Applied Physics Letters, vol. 54, p. 1893, 1989.
[40] G. Tuttle, H. Kroemer, and J. H. English, "Electron concentrations and mobilities in AlSb/InAs/AlSb quantum wells," Journal of Applied Physics, vol. 65, p. 5239, 1989.
[41] G. Tuttle and H. Kroemer, "IIA-7 an AlSb/InAs/AlSb quantum well HFT," IEEE Transactions on Electron Devices, vol. 34, pp. 2358-2358, 1987.
[42] G. Tuttle, H. Kroemer, and J. H. English, "Effects of interface layer sequencing on the transport properties of InAs/AlSb quantum wells: Evidence for antisite donors at the InAs/AlSb interface," Journal of Applied Physics, vol. 67, p. 3032, 1990.
[43] S. Sasa, Y. Yamamoto, S. Izumiya, M. Yano, Y. Iwai, and M. Inoue, "Increased electron concentration in InAs/AlGaSb heterostructures using a Si planar doped ultrathin InAs quantum well," Japanese Journal of Applied Physics, vol. 36, pp. 1869-1871, 1997.
[44] S. Subbanna, G. Tuttle, and H. Kroemer, "N- type doping of gallium antimonide and aluminum antimonide grown by molecular beam epitaxy using lead telluride as a tellurium dopant source," Journal of Electronic Materials, vol. 17, pp. 297-303, 1988.
[45] R. Tsai, M. Barsky, J. B. Boos, B. R. Bennett, J. Lee, N. A. Papanicolaou, R. Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher, and A. Gutierrez, "Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics," Technical Digest of 2003 IEEE GaAs IC Symposium, pp. 294-297, 2003.
[46] J. B. Hacker, J. Bergman, G. Nagy, G. Sullivan, C. Kadow, L. Heng-Kuang, A. C. Gossard, M. Rodwell, and B. Brar, "An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier," IEEE Microwave and Wireless Components Letters, vol. 14, pp. 156-158, 2004.
[47] H.-K. Lin, P.-C. Chiu. J.-I. Chyi, .-C. Ho, Clement W, C.-H. Ko and. C.-H. W, "Method for forming antimony-based FETs monolithically," U.S. Patent 8629012B2.
[48] W. Hansen, T. P. Smith, J. Piao, R. Beresford, and W. I. Wang, "Magnetoresistance measurements of doping symmetry and strain effects in GaSb-AlSb quantum wells," Applied Physics Letters, vol. 56, p. 81, 1990.
[49] L. F. Luo, K. F. Longenbach, and W. I. Wang, "P-channel modulation-doped field-effect transistors based on AlSb0.9As0.1/GaSb," IEEE Electron Device Letters, vol. 11, pp. 567-569, 1990.
[50] J. F. Klem, J. A. Lott, J. E. Schirber, S. R. Kurtz, and S. Y. Lin, "Strained quantum well modulation-doped InGasb/AlGaSb structures grown by molecular beam epitaxy," Journal of Electronic Materials, vol. 22, pp. 315-318, 1993.
[51] B. R. Bennett, M. G. Ancona, J. B. Boos, and B. V. Shanabrook, "Mobility enhancement in strained p-InGaSb quantum wells," Applied Physics Letters, vol. 91, p. 042104, 2007.
[52] C. Liao and K. Y. Cheng, "Hole mobility in pseudomorphic InGaSb quantum well modulation doped with carbon," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 28, p. C3C29, 2010.
[53] B. R. Bennett, M. G. Ancona, J. B. Boos, C. B. Canedy, and S. A. Khan, "Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors," Journal of Crystal Growth, vol. 311, pp. 47-53, 2008.
[54] V. Tokranov, P. Nagaiah, M. Yakimov, R. J. Matyi, and S. Oktyabrsky, "AlGaAsSb superlattice buffer layer for p-channel GaSb quantum well on GaAs substrate," Journal of Crystal Growth, vol. 323, pp. 35-38, 2011.
[55] A. Nainani, Z. Yuan, T. Krishnamohan, B. R. Bennett, J. B. Boos, M. Reason, M. G. Ancona, Y. Nishi, and K. C. Saraswat, "InxGa1-xSb channel p-metal-oxide-semiconductor field effect transistors: Effect of strain and heterostructure design," Journal of Applied Physics, vol. 110, p. 014503, 2011.
[56] J. Schmitz, J. Wagner, M. Maier, H. Obloh, P. Koidl, and J. D. Ralston, "Unintentional As incorporation in molecular beam epitaxially grown InAs/AlSb/GaSb heterostructures," Journal of Electronic Materials, vol. 23, pp. 1203-1207, 1994.
[57] Z. H. Li, W. X. Wang, L. S. Liu, H. C. Gao, Z. W. Jiang, J. M. Zhou, and H. Chen, "Buffer influence on AlSb/InAs/AlSb quantum wells," Journal of Crystal Growth, vol. 301-302, pp. 181-184, 2007.
[58] S. L. Chuang. Physics of optoelectronic devices, 2nd Edition ed.: Wiley, New York, 2009
[59] H.-C. Ho, Z.-Y. Gao, H.-K. Lin, P.-C. Chiu, Y.-M. Hsin, and J.-I. Chyi, "Device characteristics of InGaSb/AlSb high-hole-mobility FETs," IEEE Electron Device Letters, vol. 33, pp. 964-966, 2012.
[60] W. I. Wang, "Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100)," Applied Physics Letters, vol. 44, p. 1149, 1984.
[61] R. Fischer, H. Morkoç, D. A. Neumann, H. Zabel, C. Choi, N. Otsuka, M. Longerbone, and L. P. Erickson, "Material properties of high-quality GaAs epitaxial layers grown on Si substrates," Journal of Applied Physics, vol. 60, p. 1640, 1986.
[62] R. Fischer, D. Neuman, H. Zabel, H. Morkoç, C. Choi, and N. Otsuka, "Dislocation reduction in epitaxial GaAs on Si(100)," Applied Physics Letters, vol. 48, p. 1223, 1986.
[63] R. J. Malik, J. P. van der Ziel, B. F. Levine, C. G. Bethea, and J. Walker, "Molecular-beam epitaxy of GaSb/AlSb optical device layers on Si(100)," Journal of Applied Physics, vol. 59, p. 3909, 1986.
[64] H. Kroemer, "Polar-on-nonpolar epitaxy," Journal of Crystal Growth, vol. 81, pp. 193-204, 1987.
[65] S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, "Gallium arsenide and other compound semiconductors on silicon," Journal of Applied Physics, vol. 68, p. R31, 1990.
[66] M. Grundmann, A. Krost, and D. Bimberg, "Low-temperature metalorganic chemical vapor deposition of InP on Si(001)," Applied Physics Letters, vol. 58, p. 284, 1991.
[67] A. Georgakilas, P. Panayotatos, J. Stoemenos, J. L. Mourrain, and A. Christou, "Achievements and limitations in optimized GaAs films grown on Si by molecular-beam epitaxy," Journal of Applied Physics, vol. 71, p. 2679, 1992.
[68] R. Kaplan, "LEED study of the stepped surface of vicinal Si (100)," Surface Science, vol. 93, pp. 145-158, 1980.
[69] F. Ernst and P. Pirouz, "The formation mechanism of planar defects in compound semiconductors grown epitaxially on {100} silicon substrates," Journal of Materials Research, vol. 4, pp. 834-842, 1989.
[70] Y. C. Lin, H. Yamaguchi, E. Y. Chang, Y. C. Hsieh, M. Ueki, Y. Hirayama, and C. Y. Chang, "Growth of very-high-mobility AlGaSb∕InAs high-electron-mobility transistor structure on Si substrate for high speed electronic applications," Applied Physics Letters, vol. 90, p. 023509, 2007.
[71] L. Desplanque, S. El Kazzi, C. Coinon, S. Ziegler, B. Kunert, A. Beyer, K. Volz, W. Stolz, Y. Wang, P. Ruterana, and X. Wallart, "Monolithic integration of high electron mobility InAs-based heterostructure on exact (001) Silicon using a GaSb/GaP accommodation layer," Applied Physics Letters, vol. 101, p. 142111, 2012.
[72] K. Akahane, N. Yamamoto, S.-i. Gozu, and N. Ohtani, "Heteroepitaxial growth of GaSb on Si(001) substrates," Journal of Crystal Growth, vol. 264, pp. 21-25, 2004.
[73] K. Akahane, N. Yamamoto, S.-I. Gozu, A. Ueta, and N. Ohtani, "Initial growth stage of GaSb on Si(001) substrates with AlSb initiation layers," Journal of Crystal Growth, vol. 283, pp. 297-302, 2005.
[74] G. Balakrishnan, S. Huang, L. R. Dawson, Y. C. Xin, P. Conlin, and D. L. Huffaker, "Growth mechanisms of highly mismatched AlSb on a Si substrate," Applied Physics Letters, vol. 86, p. 034105, 2005.
[75] Y. H. Kim, J. Y. Lee, Y. G. Noh, M. D. Kim, S. M. Cho, Y. J. Kwon, and J. E. Oh, "Growth mode and structural characterization of GaSb on Si (001) substrate: A transmission electron microscopy study," Applied Physics Letters, vol. 88, p. 241907, 2006.
[76] G. Balakrishnan, S. H. Huang, A. Khoshakhlagh, P. Hill, A. Amtout, S. Krishna, G. P. Donati, L. R. Dawson, and D. L. Huffaker, "Room-temperature optically-pumped InGaSb quantum well lasers monolithically grown on Si(100) substrate," Electronics Letters, vol. 41, p. 531, 2005.
[77] G. Balakrishnan, A. Jallipalli, P. Rotella, S. Huang, A. Khoshakhlagh, A. Amtout, S. Krishna, L. R. Dawson, and D. L. Huffaker, "Room-temperature optically pumped (Al)GaSb vertical-Cavity surface-emitting laser monolithically grown on an Si(1 0 0) substrate," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, pp. 1636-1641, 2006.
[78] K. M. Ko, J. H. Seo, D. E. Kim, S. T. Lee, Y. K. Noh, M. D. Kim, and J. E. Oh, "The growth of a low defect InAs HEMT structure on Si by using an AlGaSb buffer layer containing InSb quantum dots for dislocation termination," Nanotechnology, vol. 20, p. 225201, Jun 3 2009.
[79] S. F. Fang, A. Salvador, and H. Morkoç, "Growth of gallium arsenide on hydrogen passivated Si with low-temperature treatment (∼600 °C)," Applied Physics Letters, vol. 58, p. 1887, 1991.
[80] S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, "85 nm gate length enhancement and depletion mode InSb quantum well transistors for ultrahigh speed and very low power digital logic applications," in IEDM Tech. Dig. 2005, pp. 763-766, 2005
[81] D. K. Schroder, Semiconductor material and device characterization, 3rd Edition ed.: John Wiley & Sons, Inc, 2005.
[82] A. Jallipalli, G. Balakrishnan, S. H. Huang, A. Khoshakhlagh, L. R. Dawson, and D. L. Huffaker, "Atomistic modeling of strain distribution in self-assembled interfacial misfit dislocation (IMF) arrays in highly mismatched III–V semiconductor materials," Journal of Crystal Growth, vol. 303, pp. 449-455, 2007.
[83] T. D. Mishima, J. C. Keay, N. Goel, M. A. Ball, S. J. Chung, M. B. Johnson, and M. B. Santos, "Anisotropic structural and electronic properties of InSb/AlxIn1−xSb quantum wells grown on GaAs (001) substrates," Journal of Crystal Growth, vol. 251, pp. 551-555, 2003.
[84] G. Moschetti, H. Zhao, P. A. Nilsson, S. Wang, A. Kalabukhov, G. Dambrine, S. Bollaert, L. Desplanque, X. Wallart, and J. Grahn, "Anisotropic transport properties in InAs/AlSb heterostructures," Applied Physics Letters, vol. 97, p. 243510, 2010.
[85] L. Desplanque, S. El Kazzi, J. L. Codron, Y. Wang, P. Ruterana, G. Moschetti, J. Grahn, and X. Wallart, "AlSb nucleation induced anisotropic electron mobility in AlSb/InAs heterostructures on GaAs," Applied Physics Letters, vol. 100, p. 262103, 2012.
[86] W.-Z. Ho, "Passivation process development and device characterization for InAs/AlSb high electron mobility transistors," Master degree thesis, Department of Electrical engineering, National Central University 2010.
[87] K. Takei, M. Madsen, H. Fang, R. Kapadia, S. Chuang, H. S. Kim, C. H. Liu, E. Plis, J. Nah, S. Krishna, Y. L. Chueh, J. Guo, and A. Javey, "Nanoscale InGaSb heterostructure membranes on Si substrates for high hole mobility transistors," Nano Lett, vol. 12, pp. 2060-6, Apr 11 2012.
[88] S. K. Madisetti, V. Tokranov, A. Greenea, S. Novaka, M. Yakimova, S. Oktyabrskya, S. Bentleya, and A. P. Jacob, "GaSb on Si: structural defects and their effect on surface morphology and electrical properties," Mater, Res. Soc. Symp. Proc. 1635, 2014.
[89] P. R. Berger, K. Chang, P. Bhattacharya, J. Singh, and K. K. Bajaj, "Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime," Applied Physics Letters, vol. 53, p. 684, 1988.
[90] M. K. Hudait, M. A. Shaheen, L. A. Chow, P. G. Tolchinsky, D. Loubychev, J. M. Fastenau, Liu, A. W. K. Liu, "Dislocation-free InSb quantum well structure on Si using novel buffer architecture," U.S. Patent 7573059B2, 2009.
[91] B. R. Bennett, T. F. Chick, M. G. Ancona, and J. Brad Boos, "Enhanced hole mobility and density in GaSb quantum wells," Solid-State Electronics, vol. 79, pp. 274-280, 2013.
[92] M. Edirisooriya, T. D. Mishima, C. K. Gaspe, K. Bottoms, R. J. Hauenstein, and M. B. Santos, "InSb quantum-well structures for electronic device applications," Journal of Crystal Growth, vol. 311, pp. 1972-1975, 2009.
[93] J. Wang, J. L. Xing, W. Xiang, G. W. Wang, Y. Q. Xu, Z. W. Ren, and Z. C. Niu, "Investigation of high hole mobility In0.41Ga0.59Sb/Al0.91Ga0.09Sb quantum well structures grown by molecular beam epitaxy," Applied Physics Letters, vol. 104, p. 052111, Feb 3 2014.
[94] H.-W. Huang, "Fabrication and characterization of InGaSb/AlSb high hole mobility transistor," Master degree thesis, Department of Electrical engineering, National Central University, 2013.
[95] G. Moschetti, P. A. Nilsson, A. Hallen, L. Desplanque, X. Wallart, and J. Grahn, "Planar InAs/AlSb HEMTs with ion-Implanted isolation," IEEE Electron Device Letters, vol. 33, pp. 510-512, 2012.
[96] R.-L. Chu, W.-J. Hsueh, T.-H. Chiang, W.-C. Lee, H.-Y. Lin, T.-D. Lin, G. J. Brown, J.-I. Chyi, T.-S. Huang, T.-W. Pi, J. R. Kwo, and M. Hong, "Surface passivation of GaSb(100) using molecular beam epitaxy of Y2O3and atomic layer deposition of Al2O3: A comparative study," Applied Physics Express, vol. 6, p. 121201, 2013.
指導教授 綦振瀛(Jen-inn Chyi) 審核日期 2014-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明