博碩士論文 945401026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.94.21.209
姓名 龍緒祥(Syu-Siang Long)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於正交分頻多工通訊中之低複雜度多輸入多輸出偵測器設計與實現
(Design and Implementation of Low-Complexity Multiple-Input Multiple-Output Detectors for OFDM Communications)
相關論文
★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器★ 地面數位電視廣播基頻接收器之載波同步設計
★ 適用於通訊系統之參數化數位訊號處理器核心★ 以正交分頻多工系統之同步的高效能內插法技術
★ 正交分頻多工通訊中之盲目頻域等化器★ 兆元位元率之平行化可適性決策回饋等化器設計與實作
★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design
★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計★ 低複雜度與高速多速率多階有限脈衝響應數位濾波器設計技術
★ 以FPGA實現DVB-T/H系統之二維一維與AGC-CR通道等化技術★ 適用於IEEE 802.16系統並運用極座標架構之低複雜度MIMO STBC頻域等化器設計
★ HF頻帶無線供電植入式系統之高效率前端電路分析與設計★ 地面數位電視基頻接收器之同步電路設計
★ 應用於數位視頻廣播系統中具有自動增益控制之接受端濾波器設計★ 適用IEEE 802.16e標準之多碼率單埠記憶體LDPC解碼器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出應用於正交分頻多工通訊系統中之低複雜度多輸入多輸出偵測器之演算法架構與電路實現。首先根據傳統K最佳演算法中所需之排序運算,我們提出了兩種能夠改善多條候選路徑排序效率之快速排序演算法,分別為平行切割合併法以及平行氣泡排序法以增加排序的效率及縮短排序消耗的時間週期。並且提出改良型K最佳演算法,在不損失錯誤率效能下將傳統K最佳解碼過程中的每層皆需排序修改為每兩層才需排序,以減少排序動作消耗的運算複雜度。接下來以分佈型K最佳演算法為基礎,發展具有高資料吞吐率之高能源效率低複雜度之多輸入多輸出偵測器。由於分佈型K最佳演算法不需要排序動作之優點,結合多層管線式電路架構,能夠達到高資料吞吐量之要求。再結合連續干擾消除演算法,將解碼後段過程中之拜訪節點進一步降低,以達成高能源效率。並且基於模組化管線式電路架構之彈性,能夠在不損失電路利用率及保持相同資料吞吐率下支援2x2、4x4以及8x8之多種天線組態。最後由於傳統K最佳演算法針對不同通道條件均採用相同K值,我們提出一套適應性K值自我調整演算法,能夠依照通道環境的優劣減少不必要的拜訪結點。在解碼過程中並不需要計算通道環境之訊雜比即可快速決定每一層合適的K值。以上提出之演算法依據演算法特性與應用需求,硬體實現架構分別有管線式與迴圈式,其中管線式架構能夠達到高速資料輸出之要求以及高能源效率,並且彈性支援2的冪次多重天線組態。迴圈式架構能夠適用於更複雜的天線組態並享有電路資源的可重複利用彈性,適用於較複雜演算法之實現。在此我們利用CMOS 90奈米製程,實現了三種不同演算法之硬體設計,支援天線數從2x2、4x4、8x8以及2x2至8x8,資料調變可以支援BPSK、QPSK、16-QAM以及64-QAM,K值大小為5、10手動調整以及2、5、10自我適應性調整。
摘要(英) This thesis proposes design and implementation of low-complexity multiple-input multiple-output detectors for orthogonal frequency division multiplexing communication systems. In the conventional K-Best algorithm, sorting operation of Partial Euclidean Distance (PED) values occupies a lot of computing complexity. First, we propose two types of fast sorting algorithms to deal with the large amount of enumerated candidate paths: Parallel Slice Merge Algorithm (PSMA) and Parallel Bubble Slice Sort (PBSS). Furthermore, modified K-Best (MKB) algorithm is proposed to perform sorting operation for every two layers, thanks to the proposed sorting algorithms. The MKB algorithm can reduce the computing complexity of sorting operation in the conventional K-Best algorithm without losing BER performance. Next, by taking the advantage of sorting free characteristic of Distributed K-Best (DKB) algorithm, we develop high throughput MIMO detector with multi-stage pipelined architecture. To further reducing the number of visiting nodes and achieving high power efficiency, we combine DKB algorithm with Successive Interference Cancelling (SIC) algorithm.

By applying pipelined hardware architecture and modular functional blocks, the proposed DKB+SIC MIMO detector can maintain high circuit utilization and constant throughput supporting 2x2, 4x4 and 8x8 antenna configurations.

Finally, we propose an adaptively K-value self-adjusting mechanism to reduce unnecessary visiting nodes, that is, saving computing complexity when channel environment is good.

Without calculating the exact SNR value of the channel, we can rapidly decide the K-value in each decoding layer.

According to the system applications, the proposed algorithms can be implemented into pipelined or iterative hardware architecture. The pipelined circuit can perform high throughput rate with high power efficiency and flexibly support power of two antenna configurations. The iterative circuit architecture can widely adapt various antenna configuration and is suitable for more complicated algorithms. We have implemented three kinds of MIMO detector design in CMOS 90nm process that supports 2x2, 4x4, 8x8 and from 2x2 to 8x8 antenna configurations; multiple data modulations from BPSK, QPSK, 16-QAM to 64-QAM, switch-able 5, 10 K-values and 2, 5, 10 self-adjusting.
關鍵字(中) ★ 多輸入多輸出
★ 快速排序
★ 分佈型K最佳
★ 連續干擾消除
★ 適應性調整
關鍵字(英) ★ Multiple-Input Multiple Output
★ Fast sorting
★ Distributed K-Best
★ Successive Interference Cancellation
★ Adaptively Self-adjusting
論文目次 摘要.................................................................................................... i

Page

Abstract.............................................................................................. iii

誌謝.................................................................................................... v

目錄....................................................................................................vii

圖目錄................................................................................................ xi

表目錄................................................................................................xiii

一、Introduction.................................................................. 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . 4

二、Spatial Multiplexing MIMO System............................. 5

2.1 MIMO system model . . . . . . . . . . . . . . . . . 5

2.1.1 Real-valued decomposed model . . . . . . . . . . . . 6

2.1.2 Evaluation of complex and real-valued system model 7

2.2 Channel capacity . . . . . . . . . . . . . . . . . . . . 9

2.3 Linear MIMO decoder . . . . . . . . . . . . . . . . . 9

2.3.1 Zero-Forcing (ZF) . . . . . . . . . . . . . . . . . . . 9

2.3.2 Minimum-mean square error (MMSE) . . . . . . . . 10

2.4 Sphere decoding algorithm . . . . . . . . . . . . . . 10

2.5 K-Best algorithm . . . . . . . . . . . . . . . . . . . . 11

三、A Modied K-Best MIMO Detector.............................15

3.1 The proposed modied K-best algorithm . . . . . . . 16

3.2 Code-book enumeration . . . . . . . . . . . . . . . . 17

3.3 Proposed fast sorting algorithms . . . . . . . . . . . 19

3.3.1 Parallel-Slice Merge Algorithm (PSMA) . . . . . . . 19

3.3.2 Parallel Bubble-Slice Sort (PBSS) . . . . . . . . . . . 20

3.4 Hardware implementation . . . . . . . . . . . . . . . 20

3.4.1 Supporting 2  2
參考文獻 [1] 3G LTE & IMT-Advanced Service, HSN 2006, February 22-24, 2006,

Dr. Hyeon Woo Lee, Global Standards & Research, SAMSUNG

ELECTRONICS.

[2] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A.

Hoeher, Multiple-Antenna Techniques for Wireless Communications

- A Comprehensive Literature Survey, IEEE commun. survey

& tutorials, vol. 11, no. 2, pp. 87105, second quarter, 2009.

[3] S. M. Alamouti, A simple transmit diversity technique for wireless

communications, IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp.

14511458, Oct. 1998.

[4] L. C. Godara, Application of antenna arrays to mobile communications,

part II: Beam-forming and direction-of-arrival considerations,

 Proc. IEEE, vol. 85, no. 8, pp. 11951245, Aug. 1997.

[5] M. O. Damen, A. Chkeif, and J.-C. Belore, Lattice code decoder

for space-time codes, IEEE Commun. Lett., vol. 4, no. 5, pp. 161

163, May 2000.

[6] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, Closest point search

in lattices, IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201

2214, Aug. 2002.

[7] S. Bäro, J. Hagenauer, and M. Witzke, Iterative detection of MIMO

transmission using a list-sequential (liss) detector, in Proc. IEEE

Int. Conf. Commun., 2003, pp. 26532657.

[8] K.-W. Wong, C.-Y. Tsui, R. S.-K Cheng, and W.-H. Mow, A VLSI

architecture of a K-best lattice decoding algorithm for MIMO channels,

 in Proc. ISCAS, May 2002, pp. 273276.

[9] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and

H. Bolcskei, VLSI implementation of MIMO detection using the

sphere decoding algorithm, IEEE J. Solid-State Circuits, vol. 40,

pp. 15661577, July 2005.

[10] C. Studer, A. Burg, and H. Bolcskei, Soft-output sphere decoding:

Algorithms and VLSI implementation, IEEE J. Sel. Areas Com-

mun., vol. 26, no. 2, pp. 290300, 2008.

[11] M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner,

K-best MIMO detection VLSI architectures achieving up to 424

Mbps, in Proc. ISCAS, 2006, pp. 11511154.

[12] Z. Guo and P. Nilsson, Algorithm and implementation of the Kbest

sphere decoding for MIMO detection, IEEE J. Sel. Areas

Commun., vol. 24, no. 3, pp. 491503, Mar. 2006.

[13] M. Shabany and P. G. Gulak, Scalable VLSI architecture for K-best

lattice decoders, in Proc. ISCAS, 2008, pp. 940943.

[14] C.-H. Yang, and D. Markovi¢, A exible DSP architecture for

MIMO sphere decoding, IEEE Trans. Circuit and Syst.I: Reg-

ular Papers, vol. 56, no. 10, pp. 23012314, Oct. 2009.

[15] C.-H. Liao, T.-P. Wang, and T.-D. Chiueh, A 74.8 mW soft-output

detector IC for 88 spatial-multiplexing MIMO communications,

IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 411421, Feb. 2010.

[16] B. M. Hochwald and S. ten Brink, Achieving near-capacity on a

multiple-antenna channel, IEEE Trans. Commun., vol. 51, no. 3,

pp. 389399, Mar. 2003.

[17] E. Perahia, R. Stacey, Next Generation Wireless

LANs:Throughtput, Robustness, and Reliability in 802.11n

Cambridge University Press, Sep. 2008.

[18] K. E. Batcher, "Sorting networks and their applications," Proceeding

of AFIPS Spring, Joint Computing Conference, 1968, pp. 307-

314.

[19] Z. Guo and P. Nilsson, "A VLSI architecture of the Schnorr-Euchner

decoder for MIMO systems," in Proceeding of IEEE CAS Symposium

on Emerging Technologies, June 2004, pp. 65-68.

[20] J. Jie, C. Tsui, and W. Mow, "A threshold-based algorithm and

VLSI architecture of a K-best Lattice Decoder for MIMO Systems,"

in Proceeding of IEEE ISCASO 2005, May 2005, pp. 3359-3362.

[21] N. Moezzi-Madani, T. Thorolfsson, and W. Davis, "A low-area

exible mimo detector for wi/wimax standards," in DATE ′10:

Proceedings of the 2010 Design, Automation and Test Conference,

march 2010, pp. 1633-1636.

[22] S. Chen and T. Zhang, "Low power soft-output signal detector design

for wireless MIMO communication systems," in Proceeding of

International Symposium on Low Power Electronics and Design, pp.

232-237, 2007.

[23] M. Shabany, K. Su, and P. G. Gulak, A piplined scalable highthroughput

implementation of a near-ML K-best complex lattice

decoder, in Proc. ICASSP, 2008, pp. 31733176.

[24] C.-J. Huang, C.-W. Yu, and H.-P. Ma, A power-ecient congurable

low-complexity MIMO detector, IEEE Trans. Circuit and

Syst.I: Regular Papers, vol. 56, no. 2, pp. 485496, Feb. 2009.

[25] P.-Y. Tsai, W.-T. Chen, X.-C. Lin, and M.-Y. Huang, A 44 64-

QAM Reduced-Complexity K-Best MIMO Detector up to 1.5Gbps,

in Proc. ISCAS, 2010, pp. 39533956.

[26] L. Liu, F. Ye, X. Ma, T. Zhang, and J. Ren, A 1.1-Gb/s 115-pJ/bit

Congurable MIMO Detector Using 0.13-m CMOS technology,

IEEE Trans. Circuit and Syst.II: Express Briefs, vol. 57, no. 9,

pp. 701705, Sept. 2010.

[27] C.-A. Shen, and A. M. Eltawil, A Radius Adaptive K-Best Decoder

With Early Termination: Algorithm and VLSI Architecture, IEEE

Trans. Circuit and Syst.I: Regular Papers, vol. 57, no. 9, pp. 2476

2486, Sept. 2010.

[28] T.-W. Kim, and I.-C. Park, Small-Area and Low-Energy K-Best

MIMO Detector Using Relaxed Tree Expansion and Early Forwarding,

 IEEE Trans. Circuit and Syst.I: Regular Papers, vol. 57, no.

10, pp. 27532761, Oct. 2010.

[29] S. Mondal, A. Eltawil, C.-A. Shen, and K. N. Salama, Design

and Implementation of a Sort-Free K-Best Sphere Decoder, IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 10, pp.

14971501, Oct. 2010.

[30] M. Shabany, and P. G. Gulak, A 675 Mbps, 44 64-QAM K-Best

MIMO Detector in 0.13 m CMOS, IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 20, no. 1, pp. 135147, Jan. 2012.

[31] M. Mahdavi, and M. Shabany, Novel MIMO Detection Algorithm

for High-Order Constellations in the Complex Domain, IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., accepted Apr. 2012.

[32] M. Shabany, and P. G. Gulak, A 0.13m CMOS 655Mb/s 44

64-QAM K-best MIMO detector, in Proc. IEEE Int. Solid-State

Circuits Conf., Feb. 2009, pp. 256257.

[33] H. Kawai, K. Higuchi, N. Maeda, and M. Sawahashi, Adaptive

Control of Surviving Symbol Replica Candidates in QRM-MLD for

OFDM MIMO Multiplexing, IEEE Journal on Selected Areas in

Communications, Vol. 24, pp. 1130-1140, 2006.

[34] H. L. Lin, R. Chang, and H. L. Chen "A High-Speed SDM-MIMO

Decoder Using Ecient Candidate Searching for Wireless Communication,"

IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 55, pp. 289-293, 2008.

[35] R. Shariat-Yazdi and T. Kwasniewski, "Congurable k-best mimo

detector architecture," 3rd International Symposium on Communication

, Control and Signal Processing, pp. 15651569, 2008.

[36] Y. S. Cho, J. Kim, W. Y. Yang, and C.-G. Kang, "MIMO-OFDM

Wireless Communications with MATLAB," wiley, 2010.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明