博碩士論文 945402009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.17.68.14
姓名 蔡宗憲(Chung-Hsien Tsai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 新一代GPS導航系統
(Next Generation of GPS Navigation System)
相關論文
★ 在雙向一致任意大小的環上之具自我穩定能力之相位同步★ 在一致的環狀串列上具自我穩定能力之交換配對
★ 低空間需求之分散式最佳同步交互器★ 利用區塊人臉特徵為基礎之混合式人臉辨識系統
★ 無線射頻辨識系統反碰撞協定★ 同儕網路虛擬環境之高效能安全設計
★ 無線感測網路指向天線定位機制★ 支援學習探索發問式閱讀之電子書
★ 評估電子書的螢幕數量及視窗管理影響學生學習及理解之成效★ 運用體感互動建立學習系統中肢體與情境經驗之學習成效分析
★ 讓思考看得見:基於案例式推理學習的心思記錄器★ 朝向利他性的學習評量系統
★ 可編輯情境的學習舞台★ 展現寫作思考流程的範文閱讀平台
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對傳統導航系統問題,運用普及式計算的周遭感知技術,提出新一代GPS導航技術。因為傳統導航系統主要是運用GPS定位系統結合地理資訊系統執行路徑規劃,來提供使用者即時導航指引服務。然而傳統導航系統常面臨GPS硬體誤差、人為判斷誤差與迷航等三大類問題,造成導航效果大打折扣,甚至發生意外的情形。而傳統研究在解決這些問題方面,過去所仰賴的是絕對定位的高成本建置技術與可能產生累積誤差的相對定位技術來解決GPS硬體誤差,及藉由增加3D虛擬畫面的多畫面模式來補強道路資訊以降低人為誤差,而迷航問題則是透過提供一段預設時間的迴轉訊息之後重新路徑規畫服務來解決。而這些方式皆忽略GPS字串中所隱含的使用者行為資訊,因此本論文透過探索GPS字串內的內容資訊,應用感知用路人導航行為的技術,提出下一代導航系統,也就是實景導航系統。本論文整合感知使用者行為動向的周遭感知技術與擴增實境技術,提供以人為本的導航經驗;在所提出的感知技術中,包含用來解決導航衛星定位誤差、電子羅盤累積誤差及其所處環境干擾的位置感知與方位感知服務;還有解決迷航問題的導航點服務,最後整合擴增實境介面,消弭人為判斷誤差等問題。
本論文所提出的位置感知服務,取樣所接收的GPS字串,並依據牛頓運動定律區分成七種運動狀態,並進一步推導出牛頓馬可夫模式,配合訓練階段用路人的樣本序列所建構出穩定機率轉換矩陣,即可針對所接收的GPS字串進行用路運動狀態的合理推論,即時修正用路人的位置資訊;以及在方位感知服務上,藉由電子羅盤的輔助,交互校正移動時用路人的方位資訊;接著,配合合理的位置與方位資訊,導航點服務得以針對未按照規畫路徑的用路人行為進行推論用路人是否迷路,以縮短用路人迷航時間,最後整合擴增實境技術,提供直覺的導航介面解決人為誤差判斷。本論文藉由上述所提服務的整合,實景導航系統得以確保用路人的心智地圖與導航地圖一致。
本論文研究除了實作所提之實景導航系統,並以一連串的實驗驗證所提出的位置感知、方位感知與導航點感知技術的感知能力與可用性,並探討相關系統效能,研究中也以問卷調查來探討在不同環境下,所提出之實景導航系統與傳統導航系統的導航習性差異,結果顯示所提出之實景導航感知技術能提供使用者更為即時、直覺與便利的服務,因此較傳統衛星導航系統更易受到用路人的青睞。
摘要(英) Targeting on the problems of the legacy GPS navigating system, the dissertation employs the context-aware service to design the next generation GPS navigating system. The legacy GPS navigation system is frequently persecuted with GPS ranging errors, human cognitive errors, and disorientation problems. Such types of errors always lead to significant inaccurate navigation results; even more induce accidents to the user. Most of the previous efforts on solving those issues are focused on absolute and relative approaches for GPS ranging errors, use multi-window design to display 2D geographical data and simulated 3D landscape image to reduce human cognitive error, and through a preset time interval of U-turn warning before provide re-planning services. But these services ignore the contextual information of GPS data completely. To explore the contextual information of GPS data for the user’s navigational behavior, the dissertation presents the next generation GPS navigation system, i.e. a Live-view GPS navigation system, which integrates context-aware techniques to perceive user’s intention from continuous sensors data with Augmented Reality technologies to provide a human-centric navigating experience. The perceptive techniques of Position-aware, Orientation-aware and Waypoint-aware are designed to understand users’ movements and their surrounding geographical environment to solve the mentioned errors.
The proposed Position-aware service samples received GPS data into motion states by Newton’s Law of Motion and derived Newton Markov Model (NMM). Based on NMM, Position-aware service builds up a stable Transition Probability Matrix (TPM) and learns the carrier’s behavior in the training phase. From the perceptive data of the stable TPM and online received GPS data, Position-aware infers the behavior of the GPS carrier to verify the rationality of the GPS data and then interactively rectifies received GPS data online. The Orientation-aware is done by cross reference GPS course data and digital compass. If users don’t follow the planning path, the Waypoint-aware service exercises to infer whether users are lost or not to shorten the disorientation period under the navigation state transition. Finally, the augmented navigation service is further integrated to provide an intuitive navigation interface to solve human cognitive errors. Through the interaction of these services, Live-view GPS navigation system ensures that user’s cognitive map is consistent with the navigation map.
This search not only actually implements proposed Live-view GPS navigation system, but also conduct a series of experiments o validate the perception and usability of proposed perceptive services. The user studies confirmed the proposed Live-view GPS navigation system would supply a much more timely, intuitive and convenient navigation services than ever legacy GPS navigation system did.
關鍵字(中) ★ 擴增實境
★ 隱藏馬可夫模式
★ 周遭感知
★ GPS 導航
關鍵字(英) ★ GPS Navigation
★ Context Aware
★ Hidden Markov Model
★ Augmented
論文目次 Table of Contents
Chinese Abstract ........................................ i
English Abstract ........................................ii
Acknowledgement .........................................iii
Table of Contents .......................................iv
List of Figures .........................................vi
List of Tables ........................................viii
Chapter 1 Introduction ..............................................1
1.1 GPS-base Navigation.................................................2
1.1.1 GPS Ranging Errors ....................................................4
1.1.2 Human Cognitive Errors ..............................6
1.1.3 Drift Off Course ....................................9
1.2 Live-View GPS Navigation System (LVN).................11
1.3 The Rationality and Novelty ..........................13
1.4 Organization of the Dissertation .....................15
Chapter 2 Related Works ..................................16
2.1 GPS Positioning Technique.............................17
2.2 AR Navigation ........................................22
2.3 Wayfinding Strategy...................................25
2.4 Context-aware Techniques..............................27
2.5 Derivative Services from Previous Works ..............33
Chapter 3 Behavior Perceptive Techniques .................34
3.1 Position-aware Service................................36
3.1.1 Feature Data Extraction ............................38
3.1.2 State Classification ...............................41
3.1.3 Behavior (Transition Probability Matrix) Learning...47
3.1.4 Perception and Amending ............................50
3.2 Orientation-aware Service ............................54
3.3 Waypoint-aware Service ...............................56
3.3.1 Feature Data Extraction ............................57
3.3.2 State Classification ...............................58
3.3.3 Behavior Determination..............................59
3.3.4 Waypoint Inference .................................60
Chapter 4 Implementation .......................................... 62
4.1 GPS Data for Position-aware Service...................64
4.1.1 Initializing Process................................64
4.1.2 Calculating the Feature Data........................65
4.1.3 Compute Stable TPM..................................66
4.1.4 Online Perceive with Stable TPM.....................68
4.1.5 GPS Error Data Correction...........................69
4.1.6 Proper Stable TPM Detection.........................71
4.2 Data Calculating for Orientation-aware Service........72
4.3 Astray Behavior Prediction for Waypoint-aware service.72
4.4 Augmented Reality Interface...........................75
4.5 Prototyping...........................................77
4.5.1 Initialization Interface............................78
4.5.2 Navigational Interface..............................79
Chapter 5 Experiment Results and User Study...............80
5.1 Applicability of Position-aware Service...............81
5.2 Local Stability of TPM................................84
5.3 Correctness of Posture Threshold......................85
5.4 Robustness of the Position-aware Service..............96
5.5 Perception of Position-aware Service..................97
5.6 Accuracy of the Position-aware Service...............100
5.7 Performance Evaluation of LVN system.................102
5.8 User Study...........................................103
Chapter 6 Conclusions and Future Works...................107
6.1 Conclusions..........................................107
6.2 Future Directions....................................110
Bibliography.............................................113
參考文獻 Bibliography
[1] E. A. Bretz and T. S. Perry, "X marks the spot, maybe," IEEE Spectrum, vol. 37, pp. 26–36, Apr. 2000.
[2] C. T. Judd, "Personal dead reckoning module," in Proc. of ION GPS, 1997, pp. 47-51.
[3] R. Doraiswami and R. S. Price, "A Robust Position Estimation Scheme Using Sun Sensor," IEEE Trans. Instrum. Meas., vol. 47, pp. 595–603, Apr. 1998.
[4] J.E.D. Williams, From Sails to Satellites: The Origin and Development of Navigational Science. New York: Oxford University Press, 1992.
[5] A. B. Chatfield, Fundamentals of High Accuracy Inertial Navigation. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 1997.
[6] M. Grewal and L. Weill, Global Positioning Systems, Inertial Navigation, and Integration. Hoboken, NJ: Wiley, 2001.
[7] R.G. Golledge, R.L. Klatzky, J. M. Loomis, J. Spiegle and J. Tietz, "A geographical information system for a GPS based personal guidance system", International Journal of Geographical Information Science, Taylor and Francis Ltd., London, vol.12, pp. 727-749, Apr. 1998.
[8] R. G. Golledge, Wayfinding behavior: Cognitive mapping and other spatial processes. Baltimore: Johns Hopkins University Press, 1999.
[9] R. Bajaj, S. L. Ranaweera and D. P. Agrawal, "GPS: Location-tracking technology," Computer, vol. 35, pp. 92–94, Apr. 2002.
[10] J. Casper and R. R. Murphy, "Human-robot interaction during the robot assisted urban search and rescue effort at the world trade center," IEEE Trans. on Syst., Man Cybern. B, Cybern., vol. 33, pp. 367–385, Jun. 2003.
[11] J. Soh and B. Tan, "Mobile gaming," Communications of the ACM, vol.51, pp. 35-41, Mar. 2008.
[12] S. Hong, M. H. Lee, H. H. Chun, S. H. Kwon and J. L. Speyer, "Observability of error states in GPS/INS integration," IEEE Trans. Veh. Technol., vol. 54, pp. 731-743, Mar. 2005.
[13] B. W. Parkinson, J. J. S. Jr., P. Axelrad and P. Enge, Global Positioning System: Theory and Application Volume I, Progress in Astronautics and Aeronautics, 1996.
[14] W. W. Wierwille, J. F. Antin, T. A. Dingus and M. C. Hulse, Visual Attention Demand of An In-car Navigation System. In Vision in Vehicles II, Gale, A. G., Freeman, M. H., Haslegrave, C. M., Smith, P. and Taylor S. P., Ed. Elsevier, 1988, pp. 307–316.
[15] A. J. Aretz, "The Design of Electronic Map Displays," Human Factors, vol.33, pp. 85-101, Feb. 1991.
[16] K. Harwood, Cognitive Perspectives on Map Displays. In Proc. of the 33rd Annual Meeting of the Human Factors Society, Human Factors Society, 1989, pp. 13-17.
[17] M. J. Rossano and D. H. Warren, "Misaligned Maps Lead to Predictable Errors," Perception, vol.18, pp. 215-229, 1989.
[18] C. Chen, "Bridging the Gap: The Use of Pathfinder Networks in Visual Navigation," Journal of Visual Languages and Computing, vol.9, pp. 267-286, 1998.
[19] E.C. Tolman, "Cognitive Maps in Rats and Men," Psychological Review, vol.55, pp. 189-208, Jul. 1948.
[20] J.W. Crampton, "The Cognitive processes of being lost," Scientific Journal of Orienteering, vol. 4, pp. 34-46, 1988.
[21] H. Kim and S. C. Hirtle, "Spatial metaphors and disorientation in hypertext browsing," Behaviour and Information Technology, vol.14, pp. 239-250, 1995.
[22] D. M. Michael, Agent-Based Modeling of Lost Person Wayfinding. Master thesis. University of Santa Barbara, 2010.
[23] G. Eaton, "Wayfinding in the library: Book searches and route uncertainty," RQ vol.30, pp. 519-527, 1992.
[24] R. A. Hart and G. T. Moore, The Development of Spatial Cognition: A Review. In Environmental psychology, people and their physical settings, Proshansky, H. M., Ittelson, W. H. and Rivlin, L. G., Ed., Holt: Rinehart and Winston press, 1976, pp. 258-281.
[25] Garmin Corporation. (Feb. 2010). [Online]. Available: http://www8.garmin.com/automotive/features/.
[26] H. C. Cheng, Improve GPS positioning accuracy with the context-awareness approach, Institute of Communications Engineering College of Engineering, National Chung Cheng University, Taiwan, Master thesis, 2007.
[27] Y. F. Li, Research of Live-view Navigation System, Institute of Communications Engineering College of Engineering, National Taipei University, Taiwan, Master thesis, 2009.
[28] J. A. Farrell and T. Givargis, "Differential GPS reference station algorithm: Design and analysis," IEEE Trans. Control Syst. Technol., vol. 8, pp. 519-531, May 2000.
[29] P. Enge, T. Walter, S. Pullen, C. Kee, Y. Chao and Y. Tsai, "Wide area augmentation of the global positioning system," Proc. IEEE, vol. 84, pp. 1063-1088, Aug. 1996.
[30] G. M. Djuknic and R. E. Richton, "Geolocation and assisted GPS," Computer, vol. 34, pp. 123–125, Feb. 2001.
[31] G. Dissanayake, S. Sukkarieh, E. Nebot and H. Durrant-Whyte, "The aiding of low-cost strapdown inertial measurment unit using vehicle model constraints for land vehicle applications," IEEE Trans. Robot. Autom., vol. 17, pp. 731-747, Oct. 2001.
[32] H. Qi and J. B. Moore, "Direct Kalman filtering approach for GPS/INS integration," IEEE Trans. Aerosp. Electron. Syst., vol. 38, pp.687-693, Apr. 2002.
[33] R. Jirawimut, P. Ptasinski, V. Garaj, F. Cecelja and W. Balachandran, "A method for dead reckoning parameter correction in pedestrian navigation system," IEEE Trans. Instrum. and Meas., vol. 52, pp. 209-215, Feb. 2003.
[34] C.E. White, D. Bernstein and A. L. Kornhauser, "Some map matching algorithms for personal navigation assistants," Transportation Research Part C: Emerging Technologies, vol.8, pp 91-108, Feb. 2000.
[35] P. S. Maybeck, Stochastic Models, Estimation, and Control Volume 1, Academic Press, Inc. 1979, pp.1-16.
[36] G Welch and G Bishop, "An Introduction to the Kalman Filter," University of North Carolina at Chapel Hill, Chapel Hill, NC, 2006.
[37] L. Hong, "Multirate interacting multiple model filtering for target tracking using multirate models," IEEE Trans. on Autom. Control, vol.44, pp.1326-1340, Jul. 1999.
[38] R. T. Azuma. "A survey of augmented reality," Presence: Teleoperators and Virtual Environments, vol. 6, pp. 355-385, Aug. 1997.
[39] J. Schöning, M. Löchtefeld, M. Rohs and A. Krüger, "Projector Phones: A New Class of Interfaces for Augmented Reality," International Journal of Mobile HCI, vol.2, pp. 1-14, 2010.
[40] Layar. (2010, Feb.). Layar Augmented Reality Browser. [Online]. Available: http://layar.com/.
[41] Wikitude. (2010, Feb.). Wikitude World Browser. [Online]. Available: http://www.wikitude.org/.
[42] Breadcrumbz. (2010, Feb.). Breadcrumbz Photo Navigation System. [Online]. Available:http://www.bcrumbz.com/.
[43] W. Narzt, G. Pomberger, A. Ferscha, D. Kolb, R. Muller, J. Wieghardt, H. Hortner and C. Lindinger, "Augmented Reality Navigation Systems," Universal Access Information Society, vol.4, pp. 177-187, 2006.
[44] C. Bichlmeier, S. M. Henning, M. Feuerstein and N. Navab, "The Virtual Mirror: A New Interaction Paradigm for Augmented Reality Environments," IEEE Trans. Med. Imag, vol.28, pp. 1498-1510, Sep. 2009.
[45] Z. Medenica, O. Palinko, O. Kun and T. Paek, (Poster paper). "Exploring In-Car Augmented Reality Navigation Aids: A Pilot Study," EA Ubicomp, 2009.
[46] S. Kim and A. K. Dey, Simulated Augmented Reality Windshield Display as a Cognitive Mapping Aid for Elder Driver Navigation. In Proc. of CHI, 2009, pp. 133-142.
[47] B. F. Goldiez, Techniques for Assessing and Improving Performance in Navigation and Wayfinding using Mobile Augmented Reality, Orlando, FL: Univ. Central Florida Ph.D. Dissertation, 2004.
[48] M. T¨onnis, L. Klein and G. Klinker, "Perception Thresholds for Augmented Reality Navigation Schemes in Large Distances," In Proc. of the 7th International Symposium on Mixed and Augmented Reality (ISMAR), 2008, pp. 15-18.
[49] Google Inc. (2010, Feb). Google Maps Street View, [Online]. Available: http://maps.google.com/help/maps/streetview/.
[50] T. Yoshitaka and F. Steven, (Position paper) "Prototyping an Outdoor Mobile Augmented Reality Street View Application," in Proc. of Workshop on Outdoor Mixed and Augmented Reality (ISMAR), 2009.
[51] L. Kevin, The Image of the City, MIT Press, Cambridge MA, 1960.
[52] B. N. Schilit, N. I. Adams, R. Want, "Context-Aware Computing Applications," in Proc. of the Workshop on Mobile Computing Systems and Application, Santa Cruz, CA, 1994, pp. 85-90.
[53] M. Satyanarayanan, "Pervasive Computing Vision and Challenges," IEEE Pers. Commun., vol. 6, pp. 10-17, Aug. 2001.
[54] J. Pascoe, Adding generic contextual capabilities to wearable computers. in Proc. of the 2nd IEEE International Symposium on Wearable Computers, Pittsburgh, PA, 1998 , pp. 92-99.
[55] A. K. Dey, Providing Architectural Support for Building Context-Aware Applications, Ph.D. Dissertation, Georgia Inst. Technology, 2000.
[56] R. DeVaul, M. Sung, J. Gips and A. Pentland, "MIThril 2003: Applications and Architecture," in Proc. Seventh Int’l Symp. Wearable Computers, 2003.
[57] R. W. DeVaul and S. Pentland, The MIThril Real-Time Context Engine and Activity Classification, MIT Media Lab, Tech. Rep., 2003.
[58] N. Oliver and E. Horvitz, "Selective perception policies for guiding sensing and computation in multimodal systems: A comparative analysis," Computer Vision Image Understanding, vol.100, pp. 198-224, Oct. 2005.
[59] D. J. Patterson, L. Liao, D. Fox and H. Kautz, "Inferring High-Level Behavior from Low-Level Sensors," in Proc. 5th Int’l Conf. Ubiquitous Computing, LNCS 2864, Springer-Verlag, 2003, pp. 73-89.
[60] L. Atallah and G. Z. Yang, "The use of pervasive sensing for behaviour profiling-a survey," Pervasive and Mobile Computing, vol.5, pp. 447-464, Jul. 2009.
[61] S. Hongeng and R. Nevatia, Large-scale event detection using semi-hidden Markov models, in Proc. Ninth IEEE International Conference on Computer Vision, 2003, pp. 1455-1462.
[62] P. Natarajan and R. Nevatia, Coupled Hidden Semi Markov Models for activity recognition, in IEEE Workshop on Motion and Video Computing, 2007, pp. 10.
[63] A. Wilson and A. Bobick, "Parametric Hidden Markov Models for gesture recognition," IEEE Trans. Pattern Anal. Mach. Intell. vol.21, pp. 884-900, Sep. 1999.
[64] C. Vogler and D. Metaxas, "A framework for recognizing the simultaneous aspects of American sign language," Computer Vision Image Understanding, vol.81, pp. 358-384, 2001.
[65] X. Li, M. Parizeau and R. Plamondon, "Training hidden Markov models with multiple observations combinatorial method," IEEE Trans. Pattern Anal. Mach. Intell. vol.22, pp. 371-377, Apr. 2000.
[66] X.H. Liu and C.S. Chua, "Multi-agent activity recognition using observation decomposed hidden Markov models," Image and Visual Computing, vol.2626/2003, pp. 247-256, 2003.
[67] G. Seeber. Real-Time Satellite Positioning on the Centimeter Level in the 21st Century using Permanent Reference Stations, The 13th International Technical Meeting, Salt Lake City, Utah, ION GPS2000, 2000.
[68] NMEA 0183 Standard. (2010, Feb.). [Online]. Available: http://www.nmea.org/
pub/0183/
[69] C. Schiller. (2010, Feb.). Motion Mountain The Adventure of Physics, [Online]. Available:http://www.motionmountain.net
[70] L.P. Kaelbling, M.L. Littman and A.R. Cassandra, "Planning and Acting in Partially Observable Stochastic Domains," Artificial Intelligence, vol.101, pp. 99-134, May 1998.
[71] R.A. Howard, Dynamic Programming and Markov Processes, Cambridge, MA: M.I.T. Press, 1960.
[72] L.R. Rabiner, "A Tutorial on Hidden Markov Models and Select Applications in Speech Recognition", Proc. IEEE, vol. 77, pp. 257-285, Feb. 1989.
[73] P. J. Denning, "The working set model for program behavior," Communications of the ACM, vol.11, pp. 323-333, May. 1968.
[74] W. Daniel, A. Mulloni, G. Reitmayr and T. Drummond, "Pose Tracking from Natural Feature on Mobile Phones," IEEE and ACM International Symposium on Mixed and Augmented Reality, 2008, pp. 15-18.
[75] G. L. David, "Distinctive Image Features from Scale-invariant Keypoints," International Journal of Computer Vision, vol.60, pp. 91-110, Jan. 2004.
[76] M. Ozuysal, P. Fua and V. Lepetit, "Fast Keypoint Recognition in Ten Lines of Code," in Proc. of CVPR, 2007, pp. 1-8.
[77] G. Klein and D. Murray, "Parallel Tracking and Mapping on a Camera Phone," in Proceedings of International Symposium on Mixed and Augmented Reality, 2009, pp. 83-86.
[78] K. Nakayama and J. M. Loomis, "Optical Velocity Patterns-velocity-sensitive Neurons and Space Perception: A Hypothesis," Perception, vol.3, pp. 63-80, Jun. 1974.
[79] S. Werner, B. Krieg-Brückner, H.A. Mallot and C. Freksa. Spatial cognition: The role of landmark, route, and survey knowledge in human and robot navigation, in Informatik, M Jarke, K Pasedach, K. Pohl (Hrsg.),Informatik aktuell, Berlin: Springer-Verlag, 1997, pp. 41-50.
[80] R. J. Szczerba, P. Galkowski, I. S. Glicktein and N. Ternullo, "Robust Algorithm for Real-time Route Planning," IEEE Trans. on Aerosp. Electronic Syst., vol.36, pp. 869-878, Jul. 2000.
[81] G. Rebane and J. Pearl, The Recovery of Causal Polytrees from Statistical Data. in Proc. of Workshop on Uncertainty in Artificial Intelligence, 1987, pp. 175-182.
[82] T. H. Witte and A.M. Wilson, "Accuracy of non-differential GPS for the determination of speed over ground," Journal of Biomechanics, vol. 37, pp.1891-1898, Dec. 2004.
[83] P. Axelrad, C. J. Comp and P. F. MacDoran, "SNR based multipath error correction for GPS differential phase," IEEE Trans. Aerosp. Electron. Syst., vol. 32, pp. 650–660, Apr. 1996.
[84] J. K. Ray, M. E. Cannon and P. Fenton, "GPS code and carrier multipath mitigation using a multiantenna system," IEEE Trans. Aerosp. Electron. Syst., vol. 37, pp. 183-195, Jan. 2001.
[85] M. Phatak and M. Chansarkar, "Position fix from three GPS satellites and altitude: A direct method," IEEE Trans. Aerosp. Electron. Syst., vol. 35, pp. 350-354, Jan. 1999.
[86] C. J. Lin, Y. Y. Chen and F. R. Chang, "Fuzzy Processing on GPS Data to Improve the Position Accuracy,” in Proc. Asian Fuzzy Syst. Symp.Soft Comput. Intell. Inf. Syst. and Inf., Kenting, Taiwan, 1996, pp. 557-562.
[87] R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope, vol.68, pp. 159, Dec. 1984.
[88] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms. NewYork: McGraw-Hill, 1990.
[89] R. Jirawimut, P. Ptasinski, V. Garaj, F. Cecelja and W. Balachandran, "A method for dead reckoning parameter correction in pedestrian navigation system," IEEE Trans. Instrum. and Meas., vol. 52, pp. 209-215, Feb. 2003.
[90] S. N. Goodman, "Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy", Annals of Internal Medicine, vol.130, pp. 995-1004, Jun. 1999.
[91] B. Shneiderman, Designing the User Interface: Strategie for Effective Human-Computer Interface (2nd ed.), New York:Addison-Wesley Publishing Company, 1992.
指導教授 黃興燦、黃俊堯
(Shing-Tsaan Huang、Jiung-Yao Huang)
審核日期 2011-6-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明