博碩士論文 945402028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.232.188.251
姓名 董建杰(Jian-Jie Dong)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱
(Design and Development of a PLITAZ System to Reduce Learning Progress Differences in Software Teaching)
相關論文
★ 無縫隙整合註記學習系統★ 同步表演機器人之建構與成效評估
★ 探討國小學童使用電子書多媒體註記系統結合註記分享機制對其學習行為與時間之影響★ 先備知識對註記式多媒體電子書的影響研究:從個別環境到分享環境
★ Facilitating EFL speaking and writing with peer-tutoring and storytelling strategies in authentic learning context★ An investigation into CKEL-supported EFL learning with TPR to reveal the importance of pronunciation and interactive sentence making
★ Investigation of Facilitating Physics Learning using Ubiquitous-Physics APP with Learning Map and Discussion Board in Authentic Contexts★ 智慧互動SmartVpen在真實情境對於英文學習之影響
★ 利用合作虛擬化的網絡設計輔助計算機網路學習★ 面對面與網路混合試教之研究
★ 探討對行動學習輔具科技接受模式的研究★ 開發「Web3D虛擬教室系統」與數學幾何問題解決之研究
★ 學習網站的溝通型態:內在互動、人際互動與外在互動★ 探討多媒體註記工具應用於程序性知識的學習
★ 探討面對面與網路混合試教對學習互動之影響★ 利用Web-based環境與學習活動探討程式設計的認知層次及其對學習的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在電腦教室理的軟體學習課程包含老師的授課與學生的操作學習階段,然而存在一些不利的因素導致學生的學習進度差距擴大。例如,在授課階段,因為教室的電腦與設備配置造成老師與同學的互動減少,老師很難面對面看到每位學生的學習狀況,因而對於學生的學習進度不甚瞭解。在操作學習時間,同學缺乏有效的互助機制,老師也沒有一個好的方法引導操作好的學生幫助尚未操作完的學生。此外,老師對於學生利用操作時間上網或玩遊戲也很難完全掌控。研究者發展一個叫做PLITAZ的學習輔助系統系統與三個策略來縮小學生在軟體課程的學習差距;第一個策略是"暫停授課(Pause-lecture)" --在老師授課時間,當同學無法跟上老師授課進度,可以主動表達暫停授課以跟上授課進度。 第二個策略是"即時小幫手配對(Instant Tutor-tutee match)" –若老師在忙著協助他人或者同學不敢求助老師,同學可以找到進度快的同學協助解決操作問題。第三個策略是"特別關注區(Attention zone)"—在操作學習階段,系統為老師推薦學習進度慢的學生,以便老師及早提供協助或支持。此研究主要探討發展此系統與三個機制來縮小學生的學習差距外,同時探討以下幾個問題:在授課時間,學生是否利用研究者提出的暫停授課機制來反應跟不上授課進度,以及老師何時回應學生的暫停授課請求,才能達到預定的授課進度且兼顧學生的學習進度。在學生的操作階段,探討即時小幫手配對機制是否達到更多的同學互助與更好的學習成效。以及系統如何推薦需要被關注的學生給老師,與探討學生如何利用系統建立自己的互助網路以便進行後續的互助活動。
摘要(英) In a software learning class, students not only learn by listening to the teacher’s lecture, but they also gain knowledge by practicing the assigned exercises. However, several challenges exist in a computer-equipped classroom, which lead to different rates of learning progress among students (McGrail, 2007). These challenges include: (1) social isolation of students in class; (2) teacher-student communication is limited; (3) the teacher is burdened by a heavy workload associated with both teaching and helping students practice acquired techniques; and (4) statistical information reflecting the students’ learning progress rates is seldom available to the teacher. Varying degrees of learning progress rates in a class make the teacher hesitant to present new lecture material to the students.
In this study, the author developed a learning-assisted procedure called the “PLITAZ system.” This novel method involves "pause-lecture," "instant tutor-tutee match," and "attention zone" strategies to overcome learning challenges in addition to reducing students’ learning progress differences. This study was conducted in a college-level course on a geographic information system called “ArcGIS” using the proposed system and strategies. First, the author implemented the pause-lecture strategy into the teacher’s lecture time to help the students follow the instruction. Additionally, a suitable time period was established for the teacher to react to the students’ engagement reports, which came from the strategy. Second, the author implemented the instant tutor-tutee match strategy to help the students quickly find peer tutors within the allocated practice time. This particular strategy facilitated peer support activities and learning performance. Finally, the author implemented the attention zone strategy within the allocated practice time to help the teacher identify students with slower learning progress rates.
關鍵字(中) ★ PLITAZ學習輔助系統
★ 暫停授課
★ 即時小幫手配對
★ 特別關注區
關鍵字(英) ★ PLITAZ System
★ Pause Lecture
★ Instant Tutor-Tutee Match
★ Attention Zone
論文目次 摘 要 i
Abstract ii
1. Introduction 1
1.1 Background for reducing learning progress differences 1
1.2 Study objectives and questions 7
2. Literature 9
2.1 Literature related to the pause-lecture strategy in the lecture time 9
2.1.1 Effective learning time and learning engagement 9
2.1.2 Take a break during the lecture time to engage students 11
2.2 Literature related to the instant tutor-tutee match strategy during practice time 14
2.2.1 Social interaction and social presence 14
2.2.2 Benefits and motivations behind peer-support activities 17
2.3 Literature related to recommending attention zone students to the teacher 20
2.3.1 The attention zone concept 20
2.3.2 Attributes and Naïve Bayesian used to build the attention zone model in a software learning class 22
3. Development of the PLITAZ system 26
3.1 Architecture of the PLITAZ system and strategies 26
3.2 Development of the pause-lecture strategy 28
3.3 Development of the instant tutor-tutee match strategy 32
3.3.1 Dynamic seating table 32
3.3.2 Instant tutor-tutee match 34
3.3.3 Honor list 38
3.4 Development of the attention zone strategy 39
4. Method 49
4.1 Learning material and study topics 49
4.2 Learning session of a software class using the PLITAZ system 50
4.3 Measurement of learning progress using the PLITAZ system 53
4.2 Study design of the pause-lecture strategy 55
4.2.1 Participants 55
4.2.2 Procedure 56
4.2.3 Research structure and data analysis 57
4.3 Study design of the instant tutor-tutee match strategy 58
4.3.1 Participants 58
4.3.2 Procedure 59
4.3.3 Research structure and data analysis 60
4.4 Study design of the attention zone strategy 63
4.4.1 Participants 63
4.4.2 Procedure 63
4.4.3 Research structure and data analysis 64
5. Result and discussion 68
5.1 Results and discussion of the pause-lecture strategy 68
5.1.1 Students made individual engagement reports when they could not engage in the lecture time 68
5.1.2 An appropriate timing to react to the students’ engagement reports for reducing learning progress differences 72
5.2 Results and discussion on the instant tutor-tutee match strategy 78
5.2.1 Factors that influenced students to make a peer-support friend before instant tutor-tutee match activities 78
5.2.2 Instant tutor-tutee match strategy helped reduce learning progress differences and promoted learning perfomance 90
5.3 Results and discussion of the attention zone strategy 95
The author proposed a two-phase recommendation of attention zone students to implement the attention zone strategy to help the teacher identify students who needed more attention and support in the beginning and in the middle of the allocated practice time, respectively. 95
5.3.1 Recommending the attention zone students quickly at the beginning of practice time 97
5.3.2 Accurately recommending the attention zone students in the middle of practice time 101
5.4 Implications of this study 105
6. Conclusion 106
6.1 Using the pause-lecture strategy to reduce learning progress differences during lecture times 107
6.2 Using the instant tutor-tutee match to reduce learning progress differences during practice time 108
6.3 Using the recommendation of attention zone students to reduce learning progress differences during practice time 109
6.5 Limitation and future study 110
Reference 111
參考文獻 Akkoyunlu, B., & Soylu, M. Y. (2006). A study on students’ views on blended learning environment. Turkish Online Journal of Distance Education, 7(3), 43–56.
Alavi, H., Dillenbourg, P., & Kaplan, F. (2009). Distributed awareness for class orchestration. In U. Cress, V. Dimitrova, & M. Specht (Eds.), Learning in the Synergy of Multiple Disciplines (Vol. 5794, pp. 211–225). Springer Berlin / Heidelberg. Retrieved from http://www.springerlink.com/content/b543383447800647/abstract/
Alpaydin, E. (2010). Introduction to Machine Learning 2nd edition. Massachusetts: MIT Press.
AlternativeTo. (2014). ArcGIS Alternatives and Similar Software. Retrieved July 7, 2014, from http://alternativeto.net/software/arcgisdesktop/
Amin, A. K., Kersten, B. T. A., Kulyk, O. A., Pelgrim, P. H., Wang, C. M., & Markopoulos, P. (2005). SenseMS: a user-centered approach to enrich the messaging experience for teens by non-verbal means. In Proceedings of the 7th international conference on Human computer interaction with mobile devices & services (pp. 161–166). New York, NY, USA: ACM. doi:10.1145/1085777.1085804
Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985). Intelligent tutoring systems. Science, 228(4698), 456–462. doi:10.1126/science.228.4698.456
Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing : a revision of Bloom’s taxonomy of educational objectives. New York: Longman.
Aragon, S. R. (2003). Creating social presence in online environments. New Directions for Adult and Continuing Education, 2003(100), 57–68. doi:10.1002/ace.119
Ayres, P. (2006). Impact of reducing intrinsic cognitive load on learning in a mathematical domain. Applied Cognitive Psychology, 20(3), 287–298. doi:10.1002/acp.1245
Bachman, L., & Bachman, C. (2011). A study of classroom response system clickers: Increasing student engagement and performance in a large undergraduate lecture class on architectural research. Journal of Interactive Learning Research, 22(1), 5–21.
Badstübner, T., & Ecke, P. (2009). Student expectations, motivations, target language use, and perceived learning progress in a summer study abroad program in Germany. Die Unterrichtspraxis/Teaching German, 42(1), 41–49. doi:10.1111/j.1756-1221.2009.00034.x
Baker, R. S., Corbett, A. T., Koedinger, K. R., & Wagner, A. Z. (2004). Off-task behavior in the cognitive tutor classroom: when students game the system. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 383–390).
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. In ICWSM (pp. 361–362).
Batson, C. D., Ahmad, N., Powell, A. A., & Stocks, E. L. (2008). Prosocial Motivation. In Handbook of motivation science. Guilford Press.
Bekele, R., & McPherson, M. (2011). A Bayesian performance prediction model for mathematics education: A prototypical approach for effective group composition. British Journal of Educational Technology, 42(3), 395–416. doi:10.1111/j.1467-8535.2009.01042.x
Berliner, D. C. (1984). The half-full glass: A review of research on teaching. In P. Hosford (Ed.). In Using what we know about teachers (pp. 51–84). Alexandria: VA: Association for Supervision and Curriculum Development.
Berliner, D. C. (2007). Time to Learn. Research Points, 5(2). Retrieved from http://www.aera.net/Portals/38/docs/Publications/Time%20to%20Learn.pdf
Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.
Bloom, B. S., & Krathwohl, D. R. (1956). Taxonomy of Educational Objectives: The Classification of Educational Goals Handbook I: Cognitive Domain. New York: Longman.
Bonwell, C. C., & Eison, J. A. (1991). Active learning: Creating excitement in the classroom. School of Education and Human Development, George Washington University Washington, DC.
Brown, A. L. (1992). Design experiments: theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178. doi:10.1207/s15327809jls0202_2
Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct Measurement of Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 53–61. doi:10.1207/S15326985EP3801_7
Bugeja, M. J. (2006). Facing the Facebook. Chronicle of Higher Education, 52(21), C4.
Bunz, U. (2005). Using scantron versus an audience response system for survey research: Does methodology matter when measuring computer-mediated communication competence? Computers in Human Behavior, 21(2), 343–359. doi:10.1016/j.chb.2004.02.009
Cadima, R., Ferreira, C., Monguet, J., Ojeda, J., & Fernandez, J. (2010). Promoting social network awareness: A social network monitoring system. Computers & Education, 54(4), 1233 – 1240. doi:10.1016/j.compedu.2009.11.009
Cain, J., Black, E. P., & Rohr, J. (2009). An audience response System strategy to improve student motivation, attention, and feedback. American Journal of Pharmaceutical Education, 73(2).
Cain, S. (2012). Quiet: The Power of Introverts in a World That Can’t Stop Talking (1st ed.). Crown.
Caldwell, J. H., Huitt, W. G., & Graeber, A. O. (1982). Time Spent in Learning: Implications from Research. The Elementary School Journal, 82(5), 470. doi:10.1086/461282
Carini, R. M., Kuh, G. D., & Klein, S. P. (2006). Student engagement and student learning: Testing the linkages*. Research in Higher Education, 47(1), 1–32.
Carman, J. M. (2005). Blended learning design: Five key ingredients. From Aglilant Learning: Http://www. Agilantlearning. com/pdf/Blended Learning Design. Pdf.
Carroll, J. B. (1989). The Carroll Model A 25-Year Retrospective and Prospective View. Educational Researcher, 18(1), 26–31. doi:10.3102/0013189X018001026
Cashin, W. E., & Downey, R. G. (1992). Using global student rating items for summative evaluation. Journal of Educational Psychology, 84(4), 563–572. doi:10.1037/0022-0663.84.4.563
Caspi, A., & Blau, I. (2008). Social presence in online discussion groups: testing three conceptions and their relations to perceived learning. Social Psychology of Education, 11(3), 323–346. doi:10.1007/s11218-008-9054-2
Centra, J. A., & Gaubatz, N. B. (2000). Student perceptions of learning and instructional effectiveness in college courses. Higher Education Assessment Program. Retrieved from http://144.81.87.152/Media/Products/perceptions.pdf
Chandler, P., & Sweller, J. (2011). The Split‐Attention effect as a Factor in the design of instruction. British Journal of Educational Psychology, 62(2), 233–246. doi:10.1111/j.2044-8279.1992.tb01017.x
Chen, C. M., & Chang, C. C. (2012). Mining learning social networks for cooperative learning with appropriate learning partners in a problem-based learning environment. Interactive Learning Environments, 1–28. doi:10.1080/10494820.2011.641677
Chen, C. M., & Chen, M. C. (2009). Mobile formative assessment tool based on data mining techniques for supporting web-based learning. Computers & Education, 52(1), 256–273. doi:10.1016/j.compedu.2008.08.005
Chen, Y. M. (2008). Learning to self-assess oral performance in English: A longitudinal case study. Language Teaching Research, 12(2), 235–262. doi:10.1177/1362168807086293
Chien, C. M. (2008). Applying Peer Tutoring to Programming Languages Instruction Platform (Master’s Thesis). National YunTech University, Taiwan. Retrieved from http://ethesys.yuntech.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0710108-145553
Chin, A., Xu, B., Yin, F., Wang, X., Wang, W., Fan, X., … Wang, Y. (2012). Using Proximity and Homophily to Connect Conference Attendees in a Mobile Social Network. In 2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW) (pp. 79 –87). doi:10.1109/ICDCSW.2012.56
Cobb, S. C. (2009). Social Presence and Online Learning: A Current View from a Research Perspective. Journal of Interactive Online Learning, 8(3), 241–254.
Codework-Systems. (2014). Netop Vision: Classroom management software. Retrieved August 10, 2014, from http://www.codework-systems.com/products/netop/netop-vision/
Cotton, K. (1988). Monitoring student learning in the classroom. Northwest Regional Educational Laboratory. Retrieved from http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED298085
Cram, B. (1992). Training learners for self-assessment. TESOL in Context, 2(2), 30.
Cummings, J., Lee, J., & Kraut, R. (2006). Communication technology and friendship during the transition from high school to college. Computers, Phones, and the Internet: Domesticating Information Technology, 265–278.
De Jong, T. (2010). Cognitive load theory, educational research, and instructional design: some food for thought. Instructional Science, 38(2), 105–134.
DeSchryver, M., Mishra, P., Koehleer, M., & Francis, A. (2009). Moodle vs. Facebook: Does using Facebook for Discussions in an Online Course Enhance Perceived Social Presence and Student Interaction? In Society for Information Technology & Teacher Education International Conference 2009 (Vol. 2009, pp. 329–336). Retrieved from http://editlib.org/p/30612
Dillenbourg, P. (2012). Trends in Orchestration. Retrieved May 11, 2012, from http://www.stellarnet.eu/kmi/deliverables/20110818_stellar___d1.5___trends-in-orchestration.pdf
Donath, J., & Boyd, D. (2004). Public Displays of Connection. BT Technology Journal, 22(4), 71–82. doi:10.1023/B:BTTJ.0000047585.06264.cc
Dong, J. J., & Hwang, W. Y. (2012). Study to minimize learning progress differences in software learning class using PLITAZ system. Educational Technology Research and Development, 60(3), 501–527. doi:10.1007/s11423-012-9233-x
En, K., Ym, D., & Jh, A. (2001). Does tutor subject-matter expertise influence student achievement in the problem-based learning curriculum at UNITRA Medical School? South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde, 91(6), 514–516.
Falkner, N. J. G. (2009). Is comprehension or application the more important skill for first-year computer science students? Ergo, 1(2), 15–26.
Feld, S. L. (1981). The Focused Organization of Social Ties. American Journal of Sociology, 86(5), 1015–1035. doi:10.2307/2778746
Feldon, D. F. (2007). Cognitive Load and Classroom Teaching: The Double-Edged Sword of Automaticity. Educational Psychologist, 42(3), 123–137. doi:10.1080/00461520701416173
Fisher, C. W. (1981). Teaching Behaviors, Academic Learning Time, and Student Achievement: An Overview. Journal of Classroom Interaction, 17(1), 2–15.
Galbraith, J., & Winterbottom, M. (2011). Peer‐tutoring: what’s in it for the tutor? Educational Studies, 37(3), 321–332. doi:10.1080/03055698.2010.506330
Garton, L., Haythornthwaite, C., & Wellman, B. (1997). Studying Online Social Networks. Journal of Computer-Mediated Communication, 3(1), 0–0. doi:10.1111/j.1083-6101.1997.tb00062.x
Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing Instructional Examples to Reduce Intrinsic Cognitive Load: Molar versus Modular Presentation of Solution Procedures. Instructional Science, 32(1-2), 33–58. doi:10.1023/B:TRUC.0000021809.10236.71
Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 211–220). New York, NY, USA: ACM. doi:10.1145/1518701.1518736
Goodman, A. (2010). Student and Faculty uses of Social Networking to Advance Learning in a Higher Education Classroom. In World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2010 (pp. 998–1007). Retrieved from http://editlib.org/p/35680
Granovetter, M. (1983). The Strength of Weak Ties: A Network Theory Revisited. Sociological Theory, 1, 201–233. doi:10.2307/202051
Granovetter, M. S. (1973). American Journal of Sociology, 78(6), 1360–1380.
Grimes, T. (1990). Audio-video correspondence and its role in attention and memory. Educational Technology Research and Development, 38(3), 15–25. doi:10.1007/BF02298178
Hall, R. V., Lund, D., & Jackson, D. (1968). Effects of teacher attention on study behavior. Journal of Applied Behavior Analysis, 1(1), 1–12. doi:10.1901/jaba.1968.1-1
Harger, R. O. (1996). Teaching in a computer classroom with a hyperlinked, interactive book. Education, IEEE Transactions On, 39(3), 327 –335. doi:10.1109/13.538755
Hoyt, A., McNulty, J. A., Gruener, G., Chandrasekhar, A., Espiritu, B., Ensminger, D., … Naheedy, R. (2010). An Audience Response System may influence student performance on anatomy examination questions. Anatomical Sciences Education, 3(6), 295–299. doi:10.1002/ase.184
Hsu, C. N., Huang, H. J., & Wong, T.-T. (2003). Implications of the Dirichlet Assumption for Discretization of Continuous Variables in Naive Bayesian Classifiers. Machine Learning, 53(3), 235–263. doi:10.1023/A:1026367023636
Huang, V. S., Shadmehr, R., & Diedrichsen, J. (2008). Active learning: learning a motor skill without a coach. Journal of Neurophysiology, 100(2), 879.
Huitt, W. G., & Cain, S. C. (2005). An Overview of the Conative Domain. In Educational Psychology Interactive. Valdosta: GA: Valdosta State University. Retrieved from http://www.edpsycinteractive.org/brilstar/chapters/conative.pdf
Hwang, W. Y., Chang, C. B., & Chen, G. J. (2004). The relationship of learning traits, motivation and performance-learning response dynamics. Computers & Education, 42(3), 267–287. doi:10.1016/j.compedu.2003.08.004
Järvelä, S. (2011). How does help seeking help? – New prospects in a variety of contexts. Learning and Instruction, 21(2), 297–299. doi:10.1016/j.learninstruc.2010.07.006
Johnson, D. W., Johnson, R. T., & Smith, K. A. (1998). Active Learning: Cooperation in the College Classroom. Interaction Book Company, 7208 Cornelia Drive, Edina, MN 55435 ($26). Tel: 952-831-9500; Fax: 952-831-9332; Web site: www.co-operation.org. Retrieved from http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED449714
Jones, A., & Issroff, K. (2005). Learning technologies: Affective and social issues in computer-supported collaborative learning. Computers & Education, 44(4), 395 – 408. doi:10.1016/j.compedu.2004.04.004
Jusoff, K., & Khodabandelou, R. (2009). Preliminary study on the role of social presence in blended learning environment in higher education. International Education Studies, 2(4), P79.
Karabenick, S. A. (2011). Classroom and technology-supported help seeking: The need for converging research paradigms. Learning and Instruction, 21(2), 290–296. doi:10.1016/j.learninstruc.2010.07.007
Kear, K. (2010). Social presence in online learning communities. Presented at the 7th International Conference on Networked Learning 2010, Aalborg, Denmark. Retrieved from http://www.networkedlearningconference.org.uk/
Kehrwald, B. (2008). Understanding Social Presence in Text-Based Online Learning Environments. Distance Education, 29(1), 89–106.
Keller, J. M. (1987). Strategies for stimulating the motivation to learn. Performance + Instruction, 26(8), 1–7. doi:10.1002/pfi.4160260802
Kim, J., Guo, P. J., Seaton, D. T., Mitros, P., Gajos, K. Z., & Miller, R. C. (2014). Understanding In-video Dropouts and Interaction Peaks Inonline Lecture Videos. In Proceedings of the First ACM Conference on Learning @ Scale Conference (pp. 31–40). New York, NY, USA: ACM. doi:10.1145/2556325.2566237
Kim, Y., & Baylor, A. (2006). A Social-Cognitive Framework for Designing Pedagogical Agents as Learning Companions. Educational Technology Research and Development, 54(6), 569–596. doi:10.1007/s11423-006-0637-3
Kotsiantis, S. B., Pierrakeas, C. J., & Pintelas, P. E. (2003). Preventing Student Dropout in Distance Learning Using Machine Learning Techniques. In V. Palade, R. J. Howlett, & L. Jain (Eds.), Knowledge-Based Intelligent Information and Engineering Systems (pp. 267–274). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-45226-3_37
Kuh, G. D., Cruce, T. M., Shoup, R., Kinzie, J., & Gonyea, R. M. (2008). Unmasking the effects of student engagement on first-year college grades and persistence. The Journal of Higher Education, 79(5), 540–563.
Lai, M., & Law, N. (2006). Peer Scaffolding of Knowledge Building Through Collaborative Groups with Differential Learning Experiences. Journal of Educational Computing Research, 35(2), 123–144. doi:10.2190/GW42-575W-Q301-1765
Lam, L. (2012). An Innovative Research on the Usage of Facebook in the Higher Education Context of Hong Kong. Electronic Journal of e-Learning, 10(4), 378–386.
Lee, K. M. (2004). Presence, Explicated. Communication Theory, 14(1), 27–50. doi:10.1111/j.1468-2885.2004.tb00302.x
Lego Muñoz, C., & Muñoz, C. L. (2010). Let’s “Face” It: Facebook as an Educational Tool for College Students. In World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2010 (Vol. 2010, pp. 1953–1958). Retrieved from http://editlib.org/p/35840
Lovie, P. (2005). Coefficient of Variation. In Encyclopedia of Statistics in Behavioral Science. John Wiley & Sons, Ltd. Retrieved from http://dx.doi.org/10.1002/0470013192.bsa107
Mäkitalo-Siegl, K., & Fischer, F. (2011). Stretching the limits in help-seeking research: Theoretical, methodological, and technological advances. Learning and Instruction, 21(2), 243–246. doi:10.1016/j.learninstruc.2010.07.002
Marks, H. M. (2000). Student engagement in instructional activity: Patterns in the elementary, middle, and high school years. American Educational Research Journal, 37(1), 153–184.
Mayer, R. E., & Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 43–52. doi:10.1207/S15326985EP3801_6
Mazer, J. P., Murphy, R. E., & Simonds, C. J. (2007). I’ll See You On “Facebook”: The Effects of Computer-Mediated Teacher Self-Disclosure on Student Motivation, Affective Learning, and Classroom Climate. Communication Education, 56(1), 1–17. doi:10.1080/03634520601009710
McGrail, E. (2007). Laptop Technology and Pedagogy in the English Language Arts Classroom. Journal of Technology and Teacher Education, 15(1), 59–85.
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444. doi:10.1146/annurev.soc.27.1.415
Millen, D. R., & Patterson, J. F. (2002). Stimulating social engagement in a community network. In Proceedings of the 2002 ACM conference on Computer supported cooperative work (pp. 306–313). New York, NY, USA: ACM. doi:10.1145/587078.587121
Montgomery, S. M., & Groat, L. N. (1998). Student learning styles and their implications for teaching. CRLT Occasional Papers, 10, 1–8.
Moreno, R. (2004). Decreasing Cognitive Load for Novice Students: Effects of Explanatory versus Corrective Feedback in Discovery-Based Multimedia. Instructional Science, 32(1), 99–113. doi:10.1023/B:TRUC.0000021811.66966.1d
Munoz, A., & Alvarez, M. E. (2007). Students’ Objectivity and Perception of Self Assessment in an EFL Classroom. The Journal of Asia TEFL, 4(2), 1–25.
Nussbaum, M., Alvarez, C., McFarlane, A., Gomez, F., Claro, S., & Radovic, D. (2009). Technology as small group face-to-face Collaborative Scaffolding. Computers & Education, 52(1), 147–153. doi:10.1016/j.compedu.2008.07.005
O’Connell, D. Q., & Dickinson, D. J. (1993). Student ratings of instruction as a function of testing conditions and perceptions of amount learned. Journal of Research and Development in Education, 27(1), 18–23.
Orlich, D. C., & Harder, R. (2004). Teaching strategies: a guide to effective instruction. Houghton Mifflin Co.
Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32(1), 1–8. doi:10.1023/B:TRUC.0000021806.17516.d0
Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive Load Measurement as a Means to Advance Cognitive Load Theory. Educational Psychologist, 38(1), 63–71. doi:10.1207/S15326985EP3801_8
Philip, D. (2012). Pilgrims’ Progress: The Journey towards a Knowledge Building Community in a University Undergraduate Class. Canadian Journal of Learning and Technology, 38(1). Retrieved from http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ968185
Powell, S., Straub, C., Rodriguez, J., & VanHorn, B. (2011). Using Clickers in Large College Psychology Classes: Academic Achievement and Perceptions. Journal of the Scholarship of Teaching and Learning, 11(4), 1–11.
Ramsoondur-Mungur, A. (2012). SOCIAL PRESENCE IN REAL MAURITIAN CLASSROOMS: REFLECTIONS ABOUT THE UNIVERSITY OF MAURITIUS. INTED2012 Proceedings, 5008–5012.
Ren, Y., Kraut, R., & Kiesler, S. (2006). Identity and bond theories to understand design decisions for online communities. In Academy of Management Proceedings (pp. B1–B6).
Richardson, J. C., & Swan, K. (2003). Examining Social Presence in Online Courses in Relation to Students’ Perceived Learning and Satisfaction. Journal of Asynchronous Learning Networks, 7, 68–88.
Roberts, W. E. (2008). The use of cues in multimedia instructions in technology as a way to reduce cognitive load. ProQuest.
Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Improving students’ help-seeking skills using metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 21(2), 267–280. doi:10.1016/j.learninstruc.2010.07.004
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135–146. doi:10.1016/j.eswa.2006.04.005
Ross, C., Orr, E. S., Sisic, M., Arseneault, J. M., Simmering, M. G., & Orr, R. R. (2009). Personality and motivations associated with Facebook use. Computers in Human Behavior, 25(2), 578–586. doi:10.1016/j.chb.2008.12.024
Rowe, J. P., Shores, L. R., Mott, B. W., & Lester, J. C. (2010). Integrating learning and engagement in narrative-centered learning environments. In Proceedings of the 10th international conference on Intelligent Tutoring Systems - Volume Part II (pp. 166–177). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-13437-1_17
Ryan, J., & Harrison, P. (1995). The relationship between individual instructional characteristics and the overall assessment of teaching effectiveness across different instructional contexts. Research in Higher Education, 36(5), 577–594. doi:10.1007/BF02208832
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educational Psychology, 25(1), 54–67. doi:10.1006/ceps.1999.1020
Segerstad, Y. H. A., & Ljungstrand, P. (2002). Instant messaging with WebWho. International Journal of Human-Computer Studies, 56(1), 147–171.
Sevian, H., & Robinson, W. E. (2011). Clickers Promote Learning in All Kinds of Classes–Small and Large, Graduate and Undergraduate, Lecture and Lab. Journal of College Science Teaching, 40(3), 14–18.
Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. Interactive Learning Environments, 15(1), 27–46. doi:10.1080/10494820600996972
Shrum, W., Cheek, N. H., & Hunter, S. M. (1988). Friendship in School: Gender and Racial Homophily. Sociology of Education, 61(4), 227. doi:10.2307/2112441
Sjogren, D. D. (1967). Achievement as a function of study time. American Educational Research Journal, 4(4), 337–344. doi:10.2307/1161767
SMART Technologies. (2014). SMART Sync classroom management software - SMART Technologies. Retrieved August 11, 2014, from http://smarttech.com/us/Solutions/Education+Solutions/Products+for+education/Software/SMART+Sync
So, H. J., & Brush, T. A. (2008). Student perceptions of collaborative learning, social presence and satisfaction in a blended learning environment: Relationships and critical factors. Computers & Education, 51(1), 318 – 336. doi:10.1016/j.compedu.2007.05.009
Squires, D. A., Huitt, W. G., & Segars, J. K. (1983). Effective schools and classrooms: a research-based perspective. Alexandria: Association for Supervision and Curriculum Development. Retrieved from http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED232972
Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In Cambridge handbook of the learning sciences (pp. 409–426). Cambridge.
Stuart, J., & Rutherford, R. J. D. (1978). Medical student concentration during lectures. The Lancet, 312(8088), 514–516. doi:10.1016/S0140-6736(78)92233-X
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. doi:10.1016/0364-0213(88)90023-7
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312. doi:10.1016/0959-4752(94)90003-5
Sweller, J. (2010). Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load. Educational Psychology Review, 22(2), 123–138. doi:10.1007/s10648-010-9128-5
Taiwan Good. (2014). TWG multimedia teaching broadcast system. Retrieved August 9, 2014, from http://www.twg.tw/index.php
Teo, T., Tan, S. C., Lee, C. B., Chai, C. S., Koh, J. H. L., Chen, W. L., & Cheah, H. M. (2010). The self-directed learning with technology scale (SDLTS) for young students: An initial development and validation. Computers & Education, 55(4), 1764–1771. doi:10.1016/j.compedu.2010.08.001
Tsai, Y. R., & Ernst, C. A. (2009). The model and implementation of a course-management-system (CMS)-assisted EFL reading strategy instruction. International Journal on Digital Learning Technology, 1(3), 203–223.
Tu, C. H. (2000). On-line learning migration: from social learning theory to social presence theory in a CMC environment. Journal of Network and Computer Applications, 23(1), 27–37. doi:10.1006/jnca.1999.0099
Tu, C. H., & McIsaac, M. (2002). The relationship of social presence and interaction in online classes. The American Journal of Distance Education, 16(3), 131–150.
Tuunainen, V., Pitkänen, O., & Hovi, M. (2009). Users’Awareness of Privacy on Online Social Networking Sites – Case Facebook. BLED 2009 Proceedings. Retrieved from http://aisel.aisnet.org/bled2009/42
Vassileva, J. (2012). Motivating participation in social computing applications: a user modeling perspective. User Modeling and User-Adapted Interaction, 22(1-2), 177–201. doi:10.1007/s11257-011-9109-5
Vassileva, J., Greer, J., McCalla, G., Deters, R., Zapata, D., Mudgal, C., & Grant, S. (1999). A multi-agent approach to the design of peer-help environments. Presented at the Proceeding of AIED.
Vockell, E., & Schwartz, E. (1992). Computers in the Classroom. New York: Mitchell McGraw-Hill.
Walonoski, J. A., & Heffernan, N. T. (2006). Detection and analysis of off-task gaming behavior in intelligent tutoring systems. In Intelligent Tutoring Systems (pp. 382–391).
Watson, D., & Clark, L. A. (1997). Extraversion and its positive emotional core. In R. Hogan, J. A. Johnson, & S. R. Briggs (Eds.), Handbook of personality psychology (pp. 767–793). San Diego, CA, US: Academic Press.
Webster, G. E. (1987). Influence of Peer Tutors upon Academic Learning Time--Physical Education of Mentally Handicapped Students. Journal of Teaching in Physical Education, 6(4), 393–403.
Wong, A. T., & Wong, S. C. P. (1979). The Relationship between Assignment Completion and the Attrition and Achievement in Correspondence Courses. Journal of Educational Research, 72(3), 165–68.
Wong, W. K., Chan, T. W., Chou, C. Y., Heh, J. S., & Tung, S. H. (2003). Reciprocal tutoring using cognitive tools. Journal of Computer Assisted Learning, 19(4), 416–428. doi:10.1046/j.0266-4909.2003.00046.x
Xie, B., & Salvendy, G. (2000). Prediction of Mental Workload in Single and Multiple Tasks Environments. International Journal of Cognitive Ergonomics, 4(3), 213–242. doi:10.1207/S15327566IJCE0403_3
Xun, G., & Land, S. (2004). A conceptual framework for scaffolding III-structured problem-solving processes using question prompts and peer interactions. Educational Technology Research and Development, 52(2), 5–22. doi:10.1007/BF02504836
Yin, B., Ruiz, N., Chen, F., & Khawaja, M. A. (2007). Automatic cognitive load detection from speech features. In Proceedings of the 19th Australasian conference on Computer-Human Interaction: Entertaining User Interfaces (pp. 249–255). New York, NY, USA: ACM. doi:10.1145/1324892.1324946
Zafra, A., Romero, C., & Ventura, S. (2011). Multiple instance learning for classifying students in learning management systems. Expert Systems with Applications, 38(12), 15020–15031. doi:10.1016/j.eswa.2011.05.044
Zafra, A., & Ventura, S. (2009). Predicting student grades in learning management systems with multiple instance genetic programming. Educational Data Mining. Retrieved from http://sci2s.ugr.es/keel/pdf/keel/congreso/articulo.pdf
Zepke, N., & Leach, L. (2010). Improving student engagement: Ten proposals for action. Active Learning in Higher Education, 11(3), 167–177. doi:10.1177/1469787410379680
指導教授 黃武元(Wu-Yuin Hwang) 審核日期 2014-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明