博碩士論文 945901009 詳細資訊


姓名 王信濠(HSIN-HAO WANG)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 實現在90奈米製程1伏特十位元每秒二十億次取樣採用精確參考電流源之數位類比轉換器
(1-V 10-bit 2GSample/s D/A Converter based on Precision Current Reference in 90-nm CMOS)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今通訊系統的應用中,對於高速操作與資訊流量的要求日益增加,此外因為SoC整合的需求,數位類比轉換器與數位信號處理電路的整合逐漸成為未來系統發展上一股重要的趨勢,因此電路實現上也勢必走向使用更先進的製程,針對於以上需求,本論文提出一項能應用於90奈米製程,低操作電壓、高速及高精準度的數位類比轉換器。
為了能達到高速運作的需求下,本文採取全差動電流式切換數位類比轉換器之架構,其中數位電路部份是以電流模式邏輯電路的架構來呈現,使得電路在邏輯切換時能得到較高的轉換速度,並能有效降低電路產生的偶次諧波失真與電源上的電壓抖動量。
在類比電路部份,因面臨低供應電壓及電晶體短通道效應之影響,使得在設計準確的電流源矩陣將變得非常因難,所以我們提出一個新的高準確主動式疊接電流鏡射架構,以提供電流源在切換的過程中,可同時確保電流之精確度,並能克服操作於1伏特時,輸出電壓振幅被壓縮及電流源輸出阻抗被嚴重限制之問題。
在晶片的實現上,本論文提出一個取樣頻率2GS/s之十位元數位類比轉換器,並實現在90nm CMOS 1P9M製程且操作電壓為1伏特。其中INL誤差範圍於±0.32LSB之內,而DNL誤差範圍於±0.13LSB,且輸入9.3MHz之數位碼時SFDR為65.1dB,而在982.2MHz時SFDR為54.4dB,整體的功率消耗為79mW,核心面積為 0.6mm × 0.416mm。上述規格已在晶片的模擬驗證上,證實此架構之可行性。
摘要(英) Nowadays the communication applications call for high speed operation. At the same time the SoC era continuously goes on, integrating digital-to-analog converter (DAC) with DSP becomes an important tendency. In view of this, this thesis proposes a digital-analog converter which can apply to 90um CMOS technology with low supply voltage、high speed and high solution applications.
For high speed operation, the work employed a fully differential architecture. The logic operation of the digital circuits must match the DAC so as to achieve the faster conversion rate. Therefore current mode logic (CML) is often used in the high speed logic design. Besides, CML can effectively reduce the even harmonics distortion and power-ground bounce.
In analog circuit part, output impedance is restricted by the low supply voltage and MOS short-channel effect. Designing an accurate current mirror for current source matrix, therefore, becomes extremely difficult. For 1 volt supply voltage considering the demands, a DAC with a new high precision active cascode mirror circuit is proposed in this work. The precision of this current source array can be obtained. In addition, the demand of low supply voltage and the influence of MOS short-channel effect can be overcome.
The proposed 2GS/s 10bit DAC is implemented in 90nm CMOS 1P9M technology with the supply voltage of 1 volt. The INL is ±0.32LSB, and the DNL is ±0.13LSB. When the DAC operates at an input signal frequency of 9.3MHz, a SFDR of 65.1dB can be achieved. Moreover, a SFDR of 54.4dB can be gained when the DAC operates at 982.2MHz. The power consumption of the proposed design is 79mW. The core area is 0.6mm × 0.416mm
關鍵字(中) ★ 數位類比轉換器
★ 十位元
★ 參考電流源
★ 90奈米
關鍵字(英) ★ DAC
★ 2G
★ 1V
★ 90nm
★ 10bit
★ current reference
論文目次 第一章 緒論....1
1.1 研究背景....1
1.2 研究動機....1
1.3 論文架構....2
第二章 數位類比轉換器基本原理....3
2.1 簡介....3
2.2 理想數位類比轉換器....3
2.3 數位類比轉換器規格參數定義....3
2.3.1 靜態參數(Static Parameters)....4
2.3.1.1 解析度(Resolution)....5
2.3.1.2 偏移誤差(Offset Error)....5
2.3.1.3 增益誤差(Gain Error)....6
2.3.1.4 差動非線性誤差(Differential Nonlinearity Error,DNL)....6
2.3.1.5 累積非線性誤差(Integral Nonlinearity Error,INL)....7
2.3.1.6 單調性(Monotonicity)....8
2.3.2 傳輸參數(Transmission Parameters)....8
2.3.2.1 穩定上升及下降時間(Settling Rise and Fall Time)....8
2.3.2.2 突波(Glitch)....9
2.3.2.3 轉換時間(Conversion Time)....9
2.3.3 動態參數(Dynamic Parameters)....10
2.3.3.1 信號對雜訊比(Signal-to-Noise Ratio)....10
2.3.3.2 信號對雜訊及諧波失真比 (Signal-to-Noise and Distortion Ratio)....10
2.3.3.3 總諧波失真 (Total Harmonic Distortion)....11
2.3.3.4 有效位元數 (Effective Number of Bits)....11
2.3.3.5 SFDR (Spurious Free Dynamic Range)....11
第三章 數位類比轉換器基本架構....12
3.1 電阻串列式數位類比轉換....12
3.2 兩級串列電阻式數位類比轉換器....13
3.3 二進碼權重電阻式數位類比轉換器....14
3.4 電容電荷重新分布式數位類比轉換器....15
3.5 R-2R電阻階梯式數位類比轉換器....16
3.6 電流切換式數位類比轉換器....17
3.6.1 二進位碼權重電流切換式數位類比轉換器....18
3.6.2 溫度計碼電流切換式數位類比轉換器....19
3.6.3 分段式電流切換式數位類比轉換器....21
第四章 數位類比轉換器設計考量....22
4.1 Current Steering DAC 的設計考量....22
4.2 SNDR與Mismatch的關係....22
4.3 元件與Mismatch的分析....26
4.4 INL&DNL分析....27
4.5 動態參數SFDR之分析....28
4.6 動態參數SNDR之分析....30
4.7 雜訊分析....32
4.8 電流源頻寬設計考量....34
4.9 分段式考量....36
4.10 數位電路的設計考量....38
4.10.1 MOS電流型式邏輯....38
4.10.2 二進碼轉溫度計碼編碼電路....39
4.10.3 Pipeline設計方式....42
4.11 突波設計考量....42
4.11.1 數位控制訊號不同步....43
4.11.2 電流切換時開關同時出現關閉....44
4.12 電流源佈局考量....45
4.12.1 線性梯度誤差(Linear Gradient Error)....46
4.12.2 拋物線梯度誤差(Parabolic Gradient Error)....47
第五章 電路實現與模擬結果....49
5.1 電流源電路....49
5.2 定電流電路....51
5.3 高準確性主動式疊接電流源鏡射架構....52
5.3.1 電流源偏壓平均化設計....52
5.3.2 高準確性主動式疊接電流鏡射架構....53
5.3.3 高增益主動式運算放大器電路....56
5.4 Current Steering 數位類比轉換器電路實現....58
5.5 Current Steering 數位類比轉換器模擬結果....58
5.5.1 靜態參數的模擬....59
5.5.2 動態參數的模擬....63
5.6 晶片佈局圖....70
5.7 規格與效能比較....73
5.8 量測考量....74
第六章 結論....76
6.1 總結....76
6.2 未來展望....77
參考文獻....78
參考文獻 [1]T. Okayasu, M. Suda, K. Yamamoto, “CMOS Circuit Technology for Precise GHz Timing Generator”, Proceedings of International Test Conference, pp. 894-902, 2002
[2]B. Schafferer, R. Adams , “A 3V CMOS 400Mw 14b 1.4GS/s DAC for Multi-Carrier Applications”, International Solid-State Circuits Conference, Vol.2, pp. 360-361, Feb. 2004
[3]Myung-Jun Choe, Kwang-Hyun Baek, “A 1.6-GS/s 12-bit return-to-zero GaAs RF DAC for multiple nyquist operation”, Journal of Solid-State Circuits, Vol.40, No.12, Dec. 2005
[4]L. Yuan, W. Ni, Y. Shi, F.F. Dai, “A 10-bit 2GHz Current-Steering CMOS D/A Converter”, International Symposium on Circuits and Systems, pp.737-740, May, 2007
[5]P.K. Oborn, D.T. Comer, “A new digital to analog converter resistor string architecture”, Proceedings of the International ASIC Conference and Exhibit, pp. 304-307.1997
[6]P. K. Oborn, D. T. Comer, “Enhancing performance in interpolating resistor string DACs”, International Symposium on Circuits and Systems, Vol.2, pp. 541-544, Aug 2002
[7]E. Ozalevli, H. Dinc, H. Lo, P. Hasler, “Design of a binary weighted resistor DAC using tunable linearized floating gate CMOS resistors”, Custom Integrated Circuits Conference, pp. 149-152, Oct 2006
[8]P. Ju, K. Suyama, P. Ferguson, W. Lee, “A Highly Linear Switched-Capacitor DAC for Multi-Bit Sigma-Delta D/A Applications”, International Symposium on Circuits and Systems, Vol.1, pp. 9-12, May 1995
[9]Z. Mijanovic, R. D. lvanovic, L.J. Stankovic, “R/2R+ digital to analog in converter(DAC)”, Instrumentation and Measurement technology Conference, pp. II.45-II.50 Jun. 1996.
[10]Shu-Yuan Chin, Chung-Yu Wu, “A 10-b 125 MHz CMOS digital to analog converter with threshold voltage compensated current source”, Journal of Solid-State Circuits, pp.1374-1380. Vol.40, No.12, Nov. 1994
[11]Chi-Hung Lin, K. Bult, “A 10-b 500 MSample/s CMOS DAC in 0.6mm2”, Journal of Solid-State Circuits, pp.1948-1958. Vol.33, No.12, Dec. 1998
[12]D. Seo, A. Weil, M. Feng, “A 14 Bit, 1GS/s Digital-To-Analog Converter with Improved Dynamic Performances”, International Symposium on Circuits and Systems, Vol.5, pp. 28-31, May 2000
[13]J. Wikner, N. Tan, “Modeling of CMOS digital-to-analog converters for telecommunication”, Transactions Circuits Systems II, Vol.46, pp. 489-499, May 1999.
[14]K. R. Lakshmikumar, R. A. Hadaway, M. A. Copland, “Characterization and modeling of mismatch in MOS transistors for precision analog design”, Journal of Solid-State Circuits, Vol. 21, pp.1057-1066,Dec. 1986.
[15]M. J. M. Pelgrom, A. C. J. Duinmaijer, A. P. G. Welbers, “Matching properties of MOS transistors”, Journal of Solid-State Circuits, Vol. 24, pp.1433- 1440, Oct.1989.
[16]B. Razavi, “Design of Analog CMOS Integrated Circuit”, Inc. 2001. ISBN:0-07-118815-0.
[17]A. V. Bosclz, M. Steyaert, W. Saizsen, “SFDR-bandwidth limitations for high speed high resolution current steering CMOS D/A converters”, International Symposium on Circuits and Systems, pp.1193-1196, Sep.1999
[18]D. A. Johns, K. Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, Inc. 1997. ISBN:0-471-1448-7.
[19]P. Heydari, R. Mohanavelu, “Design of Ultrahigh-Speed Low-Voltage CMOS CML Buffers and Latches”, Transactions Circuits Systems I, Vol. 12, No. 10, Oct. 2004
[20]J. M. Musicer, J. Rabaey, “MOS Current Mode Logic for Low Power, Low Noise CORDIC Computation in Mixed-Signal Environments”, International Symposium on Low Power Electronics and Design, pp.102-107, July. 2000.
[21]T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, Y. Horiba, “An 80 Msample/s Current-Steering CMOS D/A converters in 0.44mm2”, Journal of Solid-State Circuits, Vol.21 , pp.983- 988, Dec.1986.
[22]A. V. Bosch, M. Borremans, M. Steyaert, W. Sansen“ A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” Journal of Solid-State Circuits, Vol.36 , No. 3, pp.315- 324, Mar.2001.
[23]K. O'Sullivan, C. Gorman, M. Hennessy, V. Callaghan, “A 12-bit 320-MSsmple/s Current-Steering CMOS D/A Converter”, Journal of Solid-State Circuits, Vol.39, No.7, pp. 1064-1072, Jul. 2004
[24]J. Bastos, A. Marques, M. Steyaert, W. Sansen, “A 12-Bit Intrinsic Accuracy High-Speed CMOS DAC”, Journal of Solid-State Circuits, Vol.33, No.12, pp. 1959-1969, Dec. 1998
[25]D. Seo, G. H. McAllister, “A Low-Spurious Low-Power 12-bit 160-MSs DAC in 90-nm CMOS for Baseband Wireless Transmitter”, Journal of Solid-State Circuits, Vol.42, No.3, pp. 486-495, Mar. 2007
[26]D. A. Mercer, “Low-Power Approaches to High-Speed Current Steering Digital-to-Analog Converters in 0.18-um CMOS”, Journal of Solid-State Circuits, Vol. 42, N o. 8, Aug. 2007.
[27]K. O’Sullivan, C. Gorman, M. Hennessy, V. Callaghan, “A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44 mm2”, Journal of Solid-State Circuits, Vol. 39, No. 7, Jul. 2004.
[28]J. Deveugele and M. Steyaert, “A 10-bit 250-MS/s binary-weighted current-steering DAC,” Journal of Solid-State Circuits, Vol.41, No.2, pp.320–329, Feb. 2006.
[29]J. Cao, H. Lin, Y. Xiang, C. Kao, K. Dyer, “A 10-bit 1GSample/s DAC in 90-nm CMOS for Embedded Applications, ” Custom Integrated Circuits Conference, pp. 360-361, Feb. 2006.
[30]Chueh-Hao Yu, Wen-Hui Chen, Day-Uei Li, Wan-Ju Huang, “A 1V 10-Bit 400MS/s Current-Steering D/A Converter in 90-nm CMOS”, International Symposium on VLSI Design, Automation and Test, pp.1-4, Apr. 2007.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2008-4-29

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡