博碩士論文 945902016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:54.210.158.163
姓名 林士銘(Shi-Ming Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 即時的駕駛昏睡偵測和注意力監控系統
(A Real-Time Driver Drowsiness Detection andAlertness Monitor System)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,交通意外事故頻繁;九成以上的肇事都是人為因素所導
致。在本論文中,我們提出了一個駕駛昏睡和注意力的監控系統分析駕
駛的精神況狀,其中我們偵測了駕駛的眼睛的開/閉、臉部的方向、與視
線的方向。
本系統主要分成七個部份:主動光源取像設備、眼睛偵測、眼睛追
蹤、臉部偵測、臉部方向估計、視線方向估計、和駕駛注意力判定。為
了可以在不同光源環境下正確的偵測和追蹤駕駛的眼睛,我們使用紅外
線打光取像設備來擷取駕駛的眼睛和臉部影像。之後,我們擷取可能的
眼睛區域並用支援向量機 (Support Vector Machine, SVM) 來偵測所有眼
睛區塊;最後經由一些驗證條件找出一雙眼睛,並且根據眼睛位置找出
臉部範圍。在連續三張影像偵測成功後,進入追蹤模式。在追蹤模式中,
我們使用了三階段的追蹤測試,第一階段在預測的區域內做眼睛偵測;
如果第一階段失敗,則進入第二階段用支援向量機驗證的方式追蹤;如
果第二階段也失敗,則會在我們原先所找到的臉部區域中重新搜尋眼睛。
我們在不同的光源環境下測試我們的系統;例如,夜晚或車內。從
實驗的結果中我們可以看到,我們的系統可以在不同光源環境下正確的
偵測和追蹤駕駛的眼睛位置,並且正確找出臉部範圍。最後可以正確的
分析駕駛的臉部方向、視線方向、和昏睡狀況。
摘要(英) Recently, the issue of driver assistance for safety becomes more
attractive. In this thesis, we propose a computer vision system for monitoring
the driver’s vigilance.
The proposed system consists of seven parts: (1) developing an active
image acquisition equipment, (2) eye detection, (3) eye tracking, (4) face
detection , (5) face orientation estimation, (6) gaze estimation, (7) vigilance
decision.
In order to deal with various ambient light conditions, we utilize an IR
camera equipped with an active IR illuminator to extract several visual cues
such as close/open, eyelid movement, gaze direction, and face direction. A
probabilistic model is developed to measure human fatigue and to determine
fatigue based on the visual cues. At first, we get face images in the same
background and illumination by utilizing Iterative thresholding to find out the
location of brighter pixels. Second, we can obtain the positions of the eyes by
the Connected-component generation. According to the location of the pupil,
we can clip the eye region to be verified by the SVM (support vector machine)
method. then if there are a fixed numbers of image frames succeeded in
detection mode, we can turn the procedure to tracking mode.
In the experiments, the proposed approaches are evaluated by several
different light conditions such at day and night. From the experiment results,
we find that the proposed approach can stably detect or track the eyes in real
time.
論文目次 摘要 .....................................................................................................................II
誌謝 ................................................................................................................... III
目錄 ................................................................................................................... IV
第一章 緒論 .................................................................................................. 一
第二章 相關研究 .......................................................................................... 二
第三章 主動光源取像設備 ......................................................................... 三
第四章 眼睛偵測 .......................................................................................... 四
第五章 眼睛追蹤 .......................................................................................... 五
第六章 駕駛注意力判定 ............................................................................. 六
第七章 實驗 .................................................................................................. 七
第八章 結論 .................................................................................................. 八
附 錄 英文版論文 ...................................................................................... 九
Abstract ......................................................................................................... ii
Contents ........................................................................................................ iii
List of Figures ............................................................................................... iv
List of Tables .............................................................................................. viii
Chapter 1 Introduction ................................................................................... 1
1.1 Motivation ......................................................................................... 1
1.2 System overview ............................................................................... 2
1.3 Thesis organization ............................................................................ 3
Chapter 2 Related Works ................................................................................ 5
2.1 Face feature extraction ...................................................................... 5
2.2 Face detection by skin color .............................................................. 9
2.3 Face direction estimation ................................................................ 12
Chapter 3 An Active Image Acquisition Equipment .................................... 17
3.1 Bright/dark pupil phenomenon ........................................................ 17
3.2 Three IR illuminators......................................................................... 18
3.3 Comparisons of three IR illuminators ............................................. 22
Chapter 4 Eye Detection and Verification .................................................... 24
4.1 Dividing an image into four parts ................................................... 25
4.2 Iterative thresholding for four divided parts ................................... 26
4.3 Connected component generation ................................................... 27
4.4 Geometric constraints ...................................................................... 28
4.5 Eye detection using support vector machine (SVM) ....................... 29
4.5.1 Support vector machine ......................................................... 29
4.5.2 Training data............................................................................ 31
Chapter 5 Eye Tracking ................................................................................ 33
5.1 Prediction ......................................................................................... 35
5.2 Three strategies for eye verification.................................................. 39
5.3 Face position estimation .................................................................. 41
Chapter 6 The Judgments on Driver’s Attention ......................................... 44
6.1 Eye close/open ................................................................................. 44
6.2 Face orientation estimation ............................................................. 48
6.3 Gaze orientation estimation ............................................................. 49
Chapter 7 Experiments ................................................................................. 53
7.1 Experimental platform ..................................................................... 53
7.2 Experimental results ........................................................................ 54
7.2.1 Eye detection ......................................................................... 54
7.2.2 Eye tracking and face position estimation ............................ 56
7.2.3 Eye open/close, face, and gaze orientation estimation .......... 60
7.2.4 Discussions ............................................................................ 63
Chapter 8 Conclusions and Future Works .................................................... 65
8.1 Conclusions ..................................................................................... 65
8.2 Future works .................................................................................... 65
References .................................................................................................... 66
參考文獻 [1] Bae, H. and S. Kim, “Real-time face detection and recognition using
hybrid-information extracted from face space and facial features,” Image
and Vision Computing, vol.23, pp.1181-1191, 2005.
[2] Berbar, M. A., H. M. Kelash, and A. A. Kandeel, “Faces and facial
features detection in color images,” in Proc. of the Geometric Modeling
and Imaging, 2006, pp.209-214.
[3] Chang, K.-S., A Driver Drowsiness Detection Based on An Active IR
illumination, Master thesis, Computer Science and Information
Engineering Dept., National Central Univ., Chung-Li, Taiwan, 2005.
[4] Chen, Y.-R., Computer Vision-based Eye Detection and Warning System
for Driver Fatigue, Master thesis, Civil Engineering Dept., National
Taiwan Univ., Taipei, Taiwan, 2005.
[5] Cristinacce, D. and T. Cootes, "Facial feature detection using adaboost
with shape constraint," in Proc. 14th Conf. Machine Vision, British, 2003,
pp. 231-240.
[6] Garcia, C. and G. Tziritas, “Face detection using quantized skin color
regions merging and wavelet packet analysis,” IEEE Trans. on
Multimedia, vol.1, no.3, pp.264-177, 1999.
[7] Hong, K.-D., A Real-time Face and Feature Location System, Master
thesis, Computer Science Dept., National Chung Hsing University,
Taichung, Taiwan, 2006.
[8] Hong, S.-X., Hazardous Driver Behavior Analysis Using Pupil Detection
and Fatigue Variation, Master thesis, Computer Science and Information
Engineering Dept., National Central Univ., Chung-Li, Taiwan, 2005.
[9] Horng, W.-B., C.-Y. Chen, Y. Chang, and C.-H. Fan, “Driver fatigue
detection based on eye tracking and dynamic template matching,” in Proc.
Int. Conf. on Networking, Sensing & Control, Taipei, Taiwan, Mar. 21-23,2004, pp.7-12.
[10] Hsiung, C.-Y., An Attention Detection System for Vehicles, Master thesis,
Computer Science and Information Engineering Dept., National Central
Univ., Chung-Li, Taiwan, 2005.
[11] Ji, Qiang, “3D face pose estimation and tracking from a monocular
camera,” Image and Vision Computing, vol.20, pp.499-511, 2002.
[12] Kawato, S. and J. Ohya, “Two-step approach for real-time eye tracking
with a new filtering technique,” in proc. IEEE Int. Conf. on System, Man
& Cybernetics, Tennessee, Oct.8-11, 2000, pp.1366-1371.
[13] Kawato, S. and N. Tetsutani, "Circle frequency filter and its
application," in Proc. Int. Conf. Workshop on Advanced Image
Technology, Taejon, Korea, Feb.8-9, 2001, pp.217-222.
[14] Kawato, S. and N. Tetsutani, “Real-time detection of between-the-eyes
with a circle frequency filter,” in Proc. 5th Asian Conf. on Computer
Vision, Melbourne, Australia, Jan.23-25, 2002.
[15] Lee, T., S.-K. Park, and M. Park, “An effective method for detecting
facial features and face in human robot interaction,” Information
Sciences, pp3166-3189, 2005.
[16] Li, Y., X.-L. Qi, and Y.-J. Wang, “Eye detection by using fuzzy template
matching and feature-parameter-based judgement,” Pattern Recognition
Letters, vol.22, iss.10, pp.1111-1124, 2001.
[17] Lin, C.-H., Face Detection, Pose Classification, and Face Recognition
Based on Triangle Geometry and Color Features, Ph.D. dissertation,
Computer Science and Information Engineering Dept., National Central
Univ., Chung-Li, Taiwan, 2001.
[18] Lo, C.-H., An Intelligent Face Detection System for Video Retrieval,
Master thesis, Computer Science and Engineering Dept., Yuan Ze Univ.,
Chungli, Taiwan, 2006.
[19] Orazio, D., T. Leo, M. Cicirelli, G. Distante, and A. Distante, “Analgorithm for real time eye detection in face images,” in Proc. 17th Int.
Conf. on Pattern Recognition, Cambridge, UK, Aug.23-26, 2004,
pp.278-281.
[20] Siana, L., A Study of Human Tracking and Face Detection on A
Pan-Tilt-Zoom Camera,” Master thesis, Elect. and Control Eng. Dept.,
National Chiao Tung Univ., Hsinchu, Taiwan, 2005.
[21] Tan, Y.-H., A Human Face Tracker System Design Study Using the
Technology of Digital Image Processing, Master thesis, Elect. Eng.
Dept., National Cheng-Kung Univ., Tainan, Taiwan, 2000.
[22] Tsao, Y.-C., Measurement of Face Recognizability for Visual
Surveillance, Master thesis, Computer Science and Information
Engineering Dept., National Chiao Tung Univ., Hsinchu, Taiwan, 2004.
[23] Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag,
1995.
[24] Wang, S.-W., Automatic Eye Detection and Glasses Removal, Master
thesis, Elect. and Control Eng. Dept., National Chiao Tung Univ.,
Hsinchu, Taiwan, 2004.
[25] Wang, T. and P. Shi, “Yawing detection for determining driver
drowsiness,” in Proc. IEEE Int. Workshop VLSI Design & Video Tech.,
Suzhou, China, May 28-30, 2005,pp.373-376.
[26] Yan, S., C. Liu, S. Z. Li, H. Zhang, and H. Yeung, "Face alignment
using texture-constrained active shape models," Image and Vision
Computing, vol.12, pp.69-75, 2002.
[27] Zheng, Z., J. Yang, and L. Yang, “A robust method for eye features
extraction on color image,” Pattern Recognition Letters, vol.26,
pp.2252-2261, 2005.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明