博碩士論文 946201006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:54.208.73.179
姓名 黃國禎(Guo-Jhen Huang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 使用系集卡曼濾波器同化都卜勒雷達資料之研究
(Doppler Radar Data Assimilation Using Ensemble Kalman Filter)
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響
★ 台灣北部初秋豪雨個案之降雨特性研究★ 同化都卜勒雷達資料改善模式預報之研究
★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報
★ 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效
★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究★ 使用偏極化/多都卜勒雷達資料研究莫拉克颱風(2009)地形降雨特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 系集卡曼濾波器(EnKF)(Ensemble Kalman Filter)是一種資料同化方法。本研究是利用EnKF技術以及觀測系統模擬實驗(OSSE)(Observation System Simulation Experiments)來測試EnKF同化都卜勒雷達資料的表現。本研究使用的模式為ARPS(Advanced Regional Prediction System),此模式是ㄧ個包含多種微物理參數的非靜力可壓縮模式。模擬個案為1977年5月20日發生在美國中部的Del City Storm。本研究在無地形及有地形情況下,設計多組實驗,如「同化系集數目」、「同化時間間隔」、「同化次數」與「同化區域」等若干實驗,探討其對模式各氣象場預報誤差的影響,並且著重在定量降水預報度的改善。結果顯示,以40個系集樣本,每5分鐘同化一次,可得到足夠準確的結果。配合雷達觀測,盡量多次同化,可有助於誤差的降低,並避免誤差擴大而無法修正回來。在有地形時,只要在過山之前就同化初期暴風發展的資訊,便能快速地掌握住暴風的位置與型態,使後續的預報更加準確。同化一個小時雷達資料以後,此系集模式的降水預報能力約可維持至少一小時的準確度。使用EnKF同化雷達資料的確對降低預報誤差具有顯著的改進。
摘要(英) Ensemble Kalman filter (EnKF) is a method for data assimilation. In this study, we apply the Observation System Simulation Experiments (OSSE) type of experimental designs to explore the performance of assimilating Doppler radar data using EnKF. A general purpose non-hydrostatic compressible model, the ARPS (Advanced Regional Prediction System), with complex multi-class microphysics, is employed for conducting all the experiments. Artificial data sets are from a simulated classic storm case that occurred on 20 May 1977 in Del City, Oklahoma. With and without terrain, we investigate the impact of several factors on the model forecasts, with the emphasis on the issue of quantitative precipitation forecast (QPF). These factors consider the number of ensembles, the time interval and frequency of data injection, the area of data availability, and so on. The major results show that using 40 members, and assimilating the radar data once every 5 minutes, can effectively produce the forecasts with sufficient accuracy. Assimilating as many data sets as possible can help to reduce the errors, and prevent the errors from growing to an uncontrollable scale. When the terrain is present and becomes a potential blockage to the radar beams, and if one can assimilate into the model the information of the initial storm development before the storm reaches the lee side of the mountain, then it is still possible to catch the location and pattern of the storm. Such a measure makes the following model forecast maintain its accuracy, even after the storm passes the mountain, and arrives at a region where the radar beams are completely blocked. Finally, to obtain an accurate one-hour QPF also requires an one-hour of radar data assimilation. Overall speaking, the assimilation of Doppler radar data does reveal significant improvements on reducing the forecast errors.
關鍵字(中) ★ 觀測系統模擬實驗
★ 都卜勒雷達
★ 資料同化
★ 系集卡曼濾波器
關鍵字(英) ★ ensemble Kalman filter
★ Doppler radar
★ observation system simulation experiments
★ data assimilation
論文目次 摘要……………………………………………………………………i
致謝……………………………………………………………………iii
目錄……………………………………………………………………iv
圖表說明………………………………………………………………vi
第一章 序論
1.1 前言………………………………………………………1
1.2 文獻回顧…………………………………………………2
1.3 研究動機與方向…………………………………………3
第二章 研究方法
2.1 資料同化方法介紹………………………………………5
2.1.1 標準卡曼濾波器………………………………7
2.1.2 系集卡曼濾波器………………………………9
2.1.3 系集平方根濾波器……………………………10
2.2 觀測系統模擬實驗設計…………………………………12
2.2.1 預報模式與真實模擬…………………………12
2.2.2 模擬雷達觀測資料……………………………13
2.2.3 系集卡曼濾波器資料同化程序………………16
2.3 定量降水檢驗方法………………………………………18
2.3.1 GS得分…………………………………………18
2.3.2 相關係數………………………………………19
第三章 無地形的觀測系統模擬實驗
3.1 測試實驗…………………………………………………20
3.1.1 實驗一:「系集數」測試………………………20
3.1.2 實驗二:「掃瞄時間」測試……………………21
3.1.3 實驗三:「是否同化徑向風與回波」測試……22
3.2 實驗四:同化後並作長時間系集預報
──「同化次數」測試………………………25
第四章 有地形的觀測系統模擬實驗
4.1 加入鐘型山脈── 實驗五:「同化次數」測試………29
4.2 加入長條型山脈…………………………………………34
4.2.1 實驗六:「同化區域」測試……………………34
4.2.2 實驗七:同化後並作長時間系集預報………38
第五章 結論與未來展望
5.1 結論………………………………………………………40
5.2 未來展望…………………………………………………42
參考文獻………………………………………………………………44
附表……………………………………………………………………47
附圖……………………………………………………………………50
略語表…………………………………………………………………91
主要符號表……………………………………………………………92
參考文獻 曾忠一,大氣科學中的反問題,初版,國立編譯館,台北市,民國九十五年。
紀博庭,2005:利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究,國立中央大學大氣物理碩士論文,70頁。
呂崇華,2006:雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分佈的物理特性,國立中央大學大氣物理研究所碩士論文,100頁。
Crook, N.A., and J. Sun, 2002: Assimilating radar, surface, and profiler data for the Sydney 2000 Forecast Demonstration Project. J. Atmos. ceanic Technol., 19, 888–898.
——, ——, 2004: Analysis and forecasting of the low-level wind during the Sydney 2000 Forecast Demonstration Project. Wea. Forecasting, 19, 151–167.
Dowell, D.C., F. Zhang, L.J. Wicker, C. Snyder, and N.A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982–2005.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99( C5), 10 143-10 162.
——, 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343-367.
Schaefer, J.T., 1990: The Critical Success Index as an indicator of warning skill. Wea. Forecasting, 5, 570–575.
Smith, P.L., C.G. Myers, and H.D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using Bulk parameterization of precipitation. J. Appl. Meteor., 14, 1156–1165.
Snyder, C. and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.
——, ——, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852.
——, ——, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132.
Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807.
Torn, R.D., G.J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 2490–2502.
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913–1924.
Xiao, Q., Y.H. Kuo, J. Sun, W.C. Lee, E. Lim, Y.R. Guo, and D.M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR System: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788.
Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Physics, 75, 161-193.
——, ——, ——, Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D.-H. Wang, 2001: The Advanced Regional Prediction System (ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phy., 76, 143-165.
——, M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Tech., 23, 46-66.
Zhang, F., C. , Snyder, and J. Sun, 2004: Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238-1253.
指導教授 廖宇慶(Yu-Chieng Liou) 審核日期 2007-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明