博碩士論文 946201011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.144.151.106
姓名 何秋鋆(Chiou-Yun Her)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 垂直風切環境中非理想渦旋結構變化–以2006年碧利斯與凱米颱風為例
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 區域氣候模式在南海季風實驗期間的區域氣候模擬研究
★ 台灣地區午後對流降水特性之分析★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案
★ 冬季中部地區空氣污染物傳送與擴散之模擬研究★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去已有許多探討環境水平風的垂直風切對熱帶氣旋影響的數值模擬研究結果,但大多為理想模擬,實際個案的探討較少。本文利用WRF (Weather Research and Forecasting model) 針對2006年降水結構明顯出現波數一不對稱之兩個颱風個案—碧利斯及凱米颱風進行3公里高解析度模擬。結合綜觀天氣分析與模式模擬,探討兩者受環境垂直風切影響的差異,並比較與過去學者研究結果之異同。
  模擬結果顯示,WRF能掌握兩個颱風強度趨勢、環境風場變化特性以及降水不對稱等結構。碧利斯與凱米的模擬路徑與RSMC最佳路徑類似,誤差不超過經緯兩度。強度模擬結果也與觀測有相同的變化趨勢,皆隨時間增加而增強,雖然誤差在最後一小時已有11百帕,但兩者相對之強度仍如同實際情況,凱米較強、碧利斯稍弱。降水分布方面,模擬同樣能掌握風切下游的降水量皆高於上游之特性,但碧利斯的模擬降水量稍高於觀測,可能是碧利斯結果中颱風強度過強或模式物理不夠完整所造成。
  與過去學者研究結果相同,碧利斯與凱米都出現與風切方向明顯相關之波數一不對稱結構,且回波最大值呈現氣旋式旋轉。雖然無法看出如同理想模擬中垂直風切明顯減弱颱風強度的特性,但模擬結果皆能顯現垂直風切對颱風所造成之影響。模擬後期,碧利斯與凱米的環境垂直風切皆快速增大,兩者在風切上游處的對流皆受到抑制,但相對於碧利斯,凱米的環流範圍較小,環境氣流之沉降作用造成凱米中心中低層明顯的增溫,這顯示熱帶氣旋環流半徑大小會造成兩者中心熱力結構受垂直風切影響程度的差異。
摘要(英) A number of numerical modeling studies have focused on the effect of vertical wind shear on TC structure and intensity, but they mostly used idealized symmetric vortex in a sheared environment. In this study, the development of typhoons BILIS (2006) and KAEMI (2006) in environmental vertical wind shear is investigated using Weather Research and Forecasting model (WRF) with finest grid length of 3km and synoptic analysis, the impact of the vertical wind shear on these two typhoon cases will be examined and compared with the previous studies.
The result is shown that the simulated track is within 2° latitude–longitude of the RSMC best track at the end of the 2-day integration. The model also reproduces reasonably well on the hurricane intensity, intensity changes and asymmetries in precipitation. The simulated intensity is about 11hPa deeper in BILIS and 11hPa weaker in KAEMI, but same as observation, KAEMI is stronger than BILIS. The WRF also simulated the structure and evolution of precipitation very well. However, the simulated rainfall rate in BILIS is higher than observed, the errors are possible due to some deficiencies in the model physics and the simulated intensity was stronger than observed.
In agreement with earlier studies, BILIS and KAEMI quickly develop to wave number one asymmetries with upward motion and rainfall concentrated on the downshear side, and the maximum reflectivity rotate cyclonically.The storm continuously intensifies with the vertical shear during 2 days, this appears to contradict with the previous findings that the vertical shear tends to produce negative impact on the intensification of tropical cyclones. However, the effects of vertical wind shear on the development of convective asymmetry setructure are very obvious. On later simulated stage, the vertical wind shear of both cases increases fast, and inhibit the development of convective in the upshear side. When vertical shear tends to suppress cloud development of KAEMI in upshear side through descending inflow of air, the low and mid-level warming of KAEMI was more obvious than BILIS. It shows that warm core structure in the center of tropical storms is sensitive to storm size in the vertical wind shear environment.
關鍵字(中) ★ 颱風
★ 垂直風切
關鍵字(英) ★ vertical wind shear
★ typhoon
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
第一章 前言 1
1-1 研究背景 1
1-2 研究動機與目的 6
第二章 天氣分析 7
2-1 碧利斯(BILIS)颱風 8
2-2 凱米(KAEMI)颱風 9
2-3 綜合比較 11
第三章 模式介紹與實驗設計 13
3-1 模式介紹 13
3-2 實驗設計 18
第四章 模擬結果與討論 19
4-1 模式校驗 19
4-1-1 颱風路徑及強度: 19
4-1-2 降雨: 20
4-1-3 垂直風切變化: 20
4-1-4 垂直風場變化: 21
4-2 颱風強度發展、結構變化與垂直風切 22
4-2-1 碧利斯颱風 22
4-2-2 凱米颱風 25
4-3 個案比較 28
第五章 結論 32
參考文獻 34
參考文獻 王翔儀,2006:垂直風切對於颱風強度影響的機制探討。國立臺灣大學大氣科學研究所碩士論文,共85頁。
Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.
Betts, A. K., andM. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709.
Black M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev, 130, 2291–2312.
Braun, S.,A., M. T. Montgomery, and Z. Pu, 2006: High-Resolution Simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 46, 3077-3107.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.
Chen, S. S., J. Knaff, F. D. Marks, 2006: Effect of vertical wind shear and storm motion on tropical cyclone rainfall asymmetry deduced from TRMM. Mon. Wea. Rev., 134, 3190-3208.
Chou M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 3, 85pp.
Corbosiero K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev, 130, 2110–2123.
Corbosiero K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci, 60, 366–376.
DeMaria M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci, 53, 2076–2087.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107.
Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer, Quart. J. Roy. Meteor. Soc., 96, 715–721.
Emanuel K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev, 128, 1139–1152.
Fels, S. B. and M. D. Schwarzkopf, 1975: The Simplified Exchange Approximation: A New Method for Radiative Transfer Calculations, J. Atmos. Sci., 32, 1475–1488.
Frank W. M., and E. A. Ritchie, 1999: Effects of environmental flow on tropical cyclone structure. Mon. Wea. Rev, 127, 2044–2061.
Frank W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev, 129, 2249–2269.
Gallina G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Extended Abstracts, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 172–173.
Gray W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev, 96, 669–700.
Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), Article 1693.
Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model, Mon. Wea. Rev., 126, 2621–2639.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation, Mon. Wea. Rev., 132, 103–120.
Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model, Mon. Wea. Rev., 124, 2322–2339.
Janjic, Z. I., 1990: The step-mountain coordinate: physical package, Mon. Wea. Rev., 118, 1429–1443.
Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes, Mon. Wea. Rev., 122, 927–945.
Janjic, Z. I., 1996: The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19–23 August; Amer. Meteor. Soc., Boston, MA, 354–355.
Janjic, Z. I., 2000: Comments on ”Development and Evaluation of a Convection Scheme for Use in Climate Models”, J. Atmos. Sci., 57, p. 3686.
Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, No. 437, 61 pp.
Jones S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc, 121, 821–851.
Jones S. C., 2000a: The evolution of vortices in vertical shear. II: Large-scale asymmetries. Quart. J. Roy. Meteor. Soc, 126, 3137–3159.
Jones S. C., 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc, 126, 3161–3185.
Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802.
Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246 pp.
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulation, Meteor. Monogr., 32, Amer. Meteor. Soc., 84 pp.
Knaff, J. A., S. A. Seseske, M. DeMaria and J. L. Demuth. 2004: On the Influences of Vertical Wind Shear on Symmetric Tropical Cyclone Structure Derived from AMSU. Mon. Wea. Rev.., 132, 2503-2510.
Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118–133.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.
Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1678–1687.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16663–16682.
Molinari J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 2493–2509.
Monin, A.S. and A.M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci., USSR, (151), 163–187 (in Russian).
Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.
Rogers R. F., S. S. Chen, J. E. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577–1599.
Schwarzkopf, M. D., and S. B. Fels, 1991: The simplified exchange method revisited — An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96 (D5), 9075–9096.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR Tech Notes-468+STR.
Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 1870–1884.
Smirnova, T. G., J. M. Brown, S. G. Benjamin, and D. Kim, 2000: Parameterization of coldseason processes in the MAPS land-surface scheme. J. Geophys. Res., 105 (D3), 4077–4086.
Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.
Wang, W., D. Barker, C. Bruy`ere, J. Dudhia, D. Gill, and J. Michalakes, 2004: WRF Version 2 modeling system user’s guide. http://www.mmm.ucar.edu/wrf/users/docs/user guide/.
Wang Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257–278.
Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability, Quart. J. Roy. Meteor. Soc., 96, 67–90.
Wong, M. L. M. and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859-1876.
Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NESDIS 61, NOAA Tech. Rep., 181 pp. [Available from National Environmental Satellite, Data and Information Service, Washington, DC 20233.].
Zehr R., 2003: Environmental vertical wind shear with Hurricane Bertha (1996). Wea. Forecasting, 18, 345 –356.
Zhu T., D.-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225–241.
指導教授 張隆男、林沛練
(Long-Nan Chang、Pay-Liam Lin)
審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明