博碩士論文 946202003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.176.125
姓名 陳信文(Hsin-wen Chen)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 以恆春地震探討高屏地區之場址效應
(Analysis of site effect of Kaohsiung and Pingtung area during the HengChun Earthquake)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 利用隨機式震源模型探討蘭陽平原之場址效應★ 利用時頻分析技術檢視土壤非線性反應
★ 台灣潛勢地震之發生機率評估★ 加速度地動潛勢預估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2006 年12 月26 號20 點26 分及20 點34 分,在屏東恆春外海相繼發生兩起芮氏規模7.0 的地震,根據中央氣象局定位結果,地震震央分別位於墾丁地震站西南方38.4公里以及墾丁地震站西方33.1 公里。這次恆春地震也是近幾十年間以來,高屏恆春地區所發生的最大地震,並且前後兩個主震對恆春地區造成些許災情,其中於恆春南灣地區造成土壤液化災情,顯示恆春地區可能有土壤非線性反應的發生。而高屏地區(除了恆春地區)相對台灣其他地區鮮少有大地震發生,但由於這次地震的發生,提供了高屏地區詳細且寶貴的強地動資料,以供我們探討高屏地區之場址效應,尤其是強震與弱震間場址效應的差異。
本研究選取了台灣強地動觀測計畫(TSMIP)中,1993 年到2004 年高屏地區代號為KAU 之測站所收到的弱震紀錄,以及兩筆恆春強震紀錄,利用單站頻譜比法進行資料的處理與分析。首先總共選取了131 筆弱震記錄分析各測站弱震之平均場址效應,並探討共振主頻分布以及某特定頻率於各測站的放大行為,得知高屏地區的共振主頻大部分位於0.5~3Hz 之間。此後利用各測站前後兩筆恆春地震之單站頻譜比與弱震平均場址相互比對,探討強、弱震間場址效應的變化行為。由研究發現強震場址壓抑放大行為主要發生於恆春東部丘陵河谷平原與高屏沿岸地區的測站,而恆春南灣液化區非線性反應頻帶位於1~3Hz 之間,應該是由於地動加速度不夠大,造成非線性頻帶較為集中且強的結果。另外,由於液化均為局部回填土造成,因此未造成較大頻帶之非線性現象。
除了一些強、弱震頻譜比間變化較明顯的測站之外,其餘測站並不容易判斷是否有非線性反應發生。所以本研究利用定量的方法來描述強震與弱震之偏差,我們將強、弱震各頻率的頻譜比值相減,在將得到的頻譜比差值除上弱震之標準偏差值,就可以得到
強弱震頻譜比的相對變化率。依此方法我們分析1~10Hz 或1~20Hz 與3~20Hz 三個頻帶的強弱震頻譜比變化率強度,發現各測站非線性反應主要發生在較高頻帶的部份,於是我們計算3~20Hz 內非線性程度最大的頻帶之平均變化率,其結果較能突顯各地區非線性的程度,更具有實際參考價值。
至於工程上所評估之液化潛能高區是否也較容易於真實地震頻譜上有非線性反應的行為發生,本研究參考國家地震工程研究中心所列出之高屏地區之液化潛能區,與有收到恆春地震資料的各測站進行非線性定量分析之結果進行比對,發現液化潛能區主要位於高屏沿海地帶,與本研究發生非線性區域相符。而屏東內陸平原區因為地質組成相對堅硬,並且地動加速度不高,故並沒有明顯非線性反應。
由潛能圖上可以發現在河口附近之液化潛能都較高,主要是因為在此地區SPT-N 值都偏低,且含有大量的沉泥質砂及砂質沉泥,當承受較強的地震動時,極容易產生土壤非線性反應。這可能也是恆春地區之土壤非線性反應主要集中在恆春東部丘陵河谷沖積扇的主因。因為設置於牡丹、滿州的測站都位於該地區的河口或是河川曲流附近河川泥質沉積物較為豐富並且鬆軟。至於恆春西部平原區,除了南灣附近地區之外,反而沒有顯著非線性反應行為,推測是因為此區主要以石灰岩地形為主,其上覆蓋砂岩質的四溝層及現代沖積層,但是上部軟弱砂泥質沖積層不厚,導致在恆春沖積平原非線性反應不強,且靠近沿海地區主要為石灰岩與砂岩組成,地形也較高使得沖積層因而更薄,造成沿海等地如車城、貓鼻頭與鵝鑾鼻主要為放大反應。
摘要(英) On December 26, 2006 at 20:26 and 20:34, two successive earthquakes with the same magnitude 7.0 on the Richter scale occurred in the southeast Taiwan Strait near HengChun
peninsula, with one epicenter approximately 38.4 km southwest of HEN station, and another is located in 33.1km west of NEN station.The Central News Agency is reporting that it is the strongest earthquake to hit HengChun in one hundred years. The earthquake not only caused casualties and building damages, but also damaged several undersea cables, disrupting telecommunication services in various parts of Asia. Besides, in Nanwan area of HengChun suffered some disasters of soil liquefaction, it implies that the nonlinear soil response might occur during earthquake.
The data we use include weak motion records observed by KAU stations during the period from 1993 to 2004 and 2006 HengChun earthquakes, which were collected by the Taiwan
Strong Motion Instrumentation Program (TSMIP) of Central Weather Bureau (CWB).We use the Horizontal-to-Vertica(H/V) Spectral Ratio Method to conduct the analysis in this study because a good rock referent site is hard to find in PingTung alluvial plain. From the analysis of weak motion of H/V Fourier spectrum, we find the magnification near the seacoast, the site effect exists from 0.5~2Hz, and that above 2Hz the contour high area move toward the inland. Follow the result of above we can infer the thickness of accretion in PingTung plain is getting deeper from the direction of northeast toward southwest.
The aim of this study is to research whether the nonlinear soil response occurred or not during the HengChun earthquake. Two characters of nonlinear soil response from earthquake spectrum between weak and strong motions :(1)the dominant frequency of weak motion is larger than strong one; (2) the soil amplification factor have the same result as former. From our result, we find most of the nonlinear soil response usually occurred in soft alluvial plain near shore area of Kau-Ping plain.And the nonlinear soil response in the western part of HengChun are not obviously, on the contrary, we can see apparent nonlinear response in the eastern valley of hill-zone. The liquefaction site, Nanwan area, besides frequency band 1~3Hz, we can’t see the phenomenon of deamplification from the spectra between weak and strong
motions in most frequency, because the phenomena of liquefaction was caused by the local refill soil of ground surface.
關鍵字(中) ★ 恆春地震
★ 場址效應
★ 非線性場址效應
關鍵字(英) ★ nonlinear site response
★ site effect
★ HengChun earthquake
論文目次 目錄 頁碼
中文摘要..................................i
英文摘要.................................ii
誌謝....................................iii
目錄.................................... iv
圖目.....................................vi
第一章 緒論...............................1
1.1 前言..................................1
1.2 1959年恆春地震........................1
1.3 研究動機與目的........................2
1.4 前人研究..............................3
1.5 本文內容..............................5
第二章 研究區域與地質背景................10
2.1 台南背斜、中洲背斜、半屏山背斜...... 10
2.2 屏東平原.............................11
2.3 旗山斷層.............................12
2.4 潮州斷層.............................12
2.5 恆春半島.............................13
第三章 研究原理與方法....................19
3.1 土壤非線性反應...................... 19
3.1.1 大地工程方面.......................19
3.1.2 地震觀測方面.......................21
3.2 場址效應之研究原理與方法.............21
3.2.1 傅氏振幅譜.........................22
3.2.2 雙站頻譜比法.......................22
3.2.3 單站頻譜比法.......................24
3.3 資料處理過程.........................26
3.3.1 資料選取...........................26
3.3.2 S波歷時測試........................26
3.3.3 資料處理步驟.......................27
第四章 研究成果與分析討論................35
4.1 弱震平均場址效應.....................35
4.2 強弱震頻譜分析.......................37
4.3 非線性定量分析.......................43
4.4 液化潛能高區與非線性反應.............45
第五章 結論..............................94
參考文獻.................................97
附錄一..................................103
附錄二..................................107
附錄三..................................112
附錄四..................................114
附錄五..................................117
參考文獻 [1] Bolt. B. A.(1993). Earthquakes. 218-219.
[2] Astaneh, A. (1989). Preliminary report on the seismological and
engineering aspects of the October 17, 1989 Santa Cruz (Loma Prieta) earthquake, Report No.UCB/EERC-89/14, Earthquake Engineering Research Center, University of California at Berkeley, California, U.S.A.
[3] 鄭世楠,葉永田、徐明同和辛在勤主編,台灣十大災害地震圖集,交通部中央氣象局地震測報中心,台灣,民國八十八年。
[4] 葉俊岑,2001,利用單站頻譜比法探討集集地震造成之土壤非線性反應。國立中央大學碩士論文。
[5] Gutenberg, B.(1957). Effects of ground on earthquake motion. Bull.Seism. Soc, Am. 47, 221-250.
[6] Borcherdt, R. D. (1990). Influence of local geology in the San Francisco Bay region, California, on ground motion generated by the Loma Prieta earthquake of October 17, 1989. Proc. Int. Symp. Safety and Urban Life and Facilities (Tokyo, Japan).
[7] Rogers, A. M., Borcherdt, R. D., Covington, P. A. and Pekins, D. M.(1984). A comparative ground response study near Los Angles using recordings of Nevada nuclear tests and the 1971 San Fernando earthquake. Bull, Seism. Soc. Am. 74, 1925-1949.
[8] Rogers, A. M., Tinsley, J. C. and Borcherdt, R. D. (1985). Predicting relative ground response. In: J.I. Ziony (Editor), Evaluating Earthquake Hazards in the Los Angles region. US Geol. Surv. Prof. Pap. 1360, 221-248.
[9] Jarpe, S. P., Cramer, C. H., Tucker, B. E. and Shakal, A. F. (1988). A comparison of observation of ground response to weak and strongground motion at Coalinga, California. Bull, Seism. Soc. Am. 78,
421-435.
[10] Jarpe, S. P., Jutchings, L. J., Hauk, T. F. and Shakal, A. F. (1989).Selected strong- and weak-motion data from the Loma Prieta earthquake sequence. Bull, Seism. Soc. Am. 60, 167-176.
[11] Esteva, L. (1977). Microzoning: models and reality. Proc. 6th World Congr. Earthquake Eng. (New Dehli).
[12] Chin, B. H. and Aki, K. (1991). Simultaneous determination of source,path and recording site effects on strong ground motion during the Loma Prieta earthquake-a preliminary result on pervasive non-linear site effect. Bull, Seism. Soc. Am. 81, 1859-1884.
[13] Aki, K. and Chin, B. H. (1992). Local site effects on weak and strong ground motion. Int. sym. On Earthq. Disaster Prevention, Mexico City, Mexico, Vol. I, 198-211.
[14] Satoh, T., Sato, T. and Kawase, H. (1995). Nonlinear behavior of soil sediments identified by using borehole records observed at the Ashigara Valley, Japan. Bull, Seism. Soc. Am. 85, 1821-1834.
[15] Sato, K., Kokusho, T., Matsumoto, M. and Yamada, E. (1996). Nonlinear sesmic response and soil property during strong motion. Special Issue of Soil and Foundations, Japan Geotech. Soc., 41-42, Jan.
[16] Satoh, T., Horike, M., Takeuchi, Y., Uetake, T. and Suzuki, H. (1997).Nonlinear behavior of scoria soil sediments evaluated from borehole records in eastern Shizuoka prefecture, Japan. Earthquake Eng. Struct. Dyn. 26, 781-795.
[17] Wen, K. L, Beresnev, I. A., and Yeh, Y. T. (1994). Nonlinear soil amplification inferred from downhole strong seismic motion data. Geophys. Res. Lett., 21, 2625-2628.
[18] Wen, K. L., Beresnev, I. A. and Yeh, Y. T. (1995). Investigation of non-linear site amplication at two downhole strong ground motion arrays in Taiwan. Earth. Eng. Structure. Dyn., 24, 313-324.
[19] Beresnev, I. A., Wen, K. L., and Yeh, Y. T. (1995a). Nonlinear soil amplification: Its corroboration in Taiwan, Bull, Seism. Soc. Am.,85, 496-515.
[20] Beresnev, I. A., Wen, K. L., and Yeh, Y. T. (1995b). Seismological evidence for nonlinear plastic ground behavior during large earthquakes, Soil. Dyn. Earthquake Eng., 14, 103-114.
[21] Chang, C. Y., Mok, C. M., Power, M. S., Tang, Y. K., Tang, H. T. and Stepp, J. C. (1990). Equivalent linear versus nonlinear ground response analyses at Lotung seismic experiment site. Proc. Of 4th U.S. National Conference on Earthquake Engineering, Palm Springs, California, Vol. 1, 327-336.
[22] Chang, C. Y., Mok, C. M., Power, M. S., Tang, Y. K., Tang, H. T. and Stepp, J. C. (1991). Development of shear modulus reduction curves based on Lotung downhole ground motion data, Proc. 2nd Int. Conf. Recent Advances in Geotechnical Earthquake Eng. Soil Dyn., Paper No. 1.44, 111-118.
[23] Wen et al. (2006) Identification of Nonlinear Site Response Using the H/V Spectral Ratio Method. Terr. Atmos. Ocean. Sci., Vol. 17, No. 3, 533-546.
[24] Hsieh, S. H. (1972). Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the coastal plain of southwestern Taiwan, Petrol. Geol. Taiwan. 10, 323-338.
[25] Pan, Y. S. (1968). Interpretation and seismic coordination of the Bouguer gravity anomalies obtained in southwestern Taiwan, Petrol. Geol. Taiwan. 6, 197-208.
[26] 顏宏元,1991,臺灣地區重力異常分布及其在地體構造上之含意。國立中央大學地球物理研究所博士論文。
[27] Hsu, T. L. (1961). The artesian water system beneath the Pingtung valley,southern Taiwan, Proc. Geol. Soc. China, 4, 73-81.
[28] Hsieh, S. H. (1970). Geology and gravity anomalies of the Pingtung plain, Taiwan, Proc. Geol. Soc. China. 13, 76-89.
[29] Chiang, S. C. (1971). Seismic study of the Chaochou structure, Pingtung,Taiwan. Petrol. Geol. Taiwan. 8, 281-294.
[30] Yu, S. B., and Y. B. Tsai (1981). Geomagnetic investigations in the Pingtung plain, Taiwan, Bull. Inst.Earth Sciences, Academia Sinica, 1, 189-208.
[31] 耿文溥,1981,台南以東丘陵區之地質,經濟部中央地質調查所彙刊第一號,第31頁
[32] 吳樂群,1993,台灣西南部旗山地區上部第三細及第四系之沉積層序與演化。國立台灣大學理學院地質研究所博士論文。
[33] 徐慶雲,1975,台南縣坑內、龍船及高雄縣小滾水構造地質核查報告,中油內部報告。
[34] Meng, C. Y., 1967. The structural development of the southern half of western Taiwan, Proc. Geol. Soc. China 10, 77-82.
[35] Tsan, S. F. and W. P. Keng, 1968. The Neogene rocks and major structural features of southwestern Taiwan, Proc. Geol. Soc. China 6, 75-79.
[36] Hsu, T. L., and H. C. Chang (1979). Quaternary faulting in Taiwan, Mem. Geol. Soc. China. 3, 155-165.
[37] Yu, S. B., Y. T. Yeh., and Y. B. Tsai (1983). Microearthquake activity in southwestern Taiwan, Bull. Inst. Earth Sciences, Academia Sinica, 3,71-85.
[38] Duncan, J. M. and Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. ASCE, J. of the Soil Mech. And Foundations Division, 96, SM5, 1629-1651.
[39] Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay, Bull. Seism. Soc. Am. 60, 29-61.
[40] Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR of RTR1 30, 1, February.
[41] Lermo, J. and Chávez-García F. J. (1993). Site effect evaluation using spectral ratios with only one station, Bull, Seism. Soc. Am. 83, 1574-1594.
[42] Field, E. H. and Jacob, K. H., (1993). The theoretical response of sedimentary layers to ambient seismic noise. Geophysical Research Letters 20, 2925-2928.
[43] Lachet, C. and P. -Y. Bard (1994). Numerical and theoretical investigations on the possibilities and limitations of Nakamura`s technique, J. Phys. Earth 42, 377-397.
[44] Huang H. C., and T. L. Teng, 1999, An evaluation on H/V ratio vs. spectral ratio for site response estimation using the 1994 Northridge earthquake sequence, Pure & Applied Geophysics, 156, 631-649.
[45] 謝宏灝,2001,利用井下地震儀陣列探討單站頻譜比法之應用。國立中央大學地球物理所碩士論文。
[46] 古美鈴,2001,高屏地區場址效應之探討。國立中央大學地球物理所碩士論文。
[47] 吳樂群,1998,屏東平原沉積物及沉積環境分析,屏東平原地下水及水文地質研討會論文集,59~83 頁。
[48] 董倫道、楊潔豪、江崇榮,1998,屏東平原地球物理探測及地層對比,屏東平原地下水及水文地質研討會論文集,109~123 頁
[49] Seed, H. B., C. Ugas, J. Lysmer (1976). Site dependent spectra for earthquake resistant design. Bull. Seism. Soc. Am. 66, 221-243.
[50] 中興工程顧問股份有限公司,1999,經濟部中央地質調查所高雄都會區工程地質調查研究(八十八年度)研究成果報告書(期末報告)。
[51] 經濟部中央地質調查所,2000,高雄都會區地下地質調查研究(八十八年下半年及八十九年度),中央地質調查所報告第89-14 號。
[52] 陳桂寶,1998,以地震資料研究高屏地下之淺部地層構造。國立中央大學博士論文。
[53] Lee, C. T., C. T. Cheng, C. W. Liao and Y. B. Tsai (2001). Site
classification of Taiwan free-field strong-motion stations, Bull. Seism. Soc. Am.
[54] Yu, G., Anderson, J. G. and Siddharthan, R. (1993). On the characteristics of nonlinear soil response. Bull, Seism. Soc. Am. 83, 218-244.
[55] 林美聆、陳銘鴻、沈建志、陳景文、李崇正、褚炳麟、徐松圻、簡連貴、張睦雄,2001,全國液化潛能圖之製作及評估方法之研究,國家地震工程研究中心研究報告,NCREE-01-017。
[56] Robertson, P. K. and Wride, C. E., 1997. Cyclic liquefaction and its evaluation based on the SPT and CPT, Proceeding of the NCREE Workshop on Evaluation of Liquefaction Resistance of Soils, Edited by T. L. Toud and I. M. Idriss. NCREE-97-0022. pp. 41-88.
[57] Tokimatsu, K. and Yoshimi, Y., 1983. Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fines Content, Soils and Foundations, JSSMFE, Vol. 23, No. 4, 56-74.
[58] 日本道路協會,1996. 道路橋示方書,同解說,V 耐震設計篇。
[59] 陳景文、王志榮,2003,西南部地區液化潛能評估,國家地震工程研究中心研究報告,NCREE-036-005。
指導教授 溫國樑(Kuo-linag Wen) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明