博碩士論文 946202014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.128.198.21
姓名 楊萬慧(Wan-Huei Yang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 應用地形分析方法研究台灣中央山脈東翼地表抬升
(Distribution of uplift along the eastern flank of the Central Range in Taiwan: Inferences from geomorphic analyses)
相關論文
★ 應用雷達干涉法在彰化縣員林地區地層下陷研究★ 應用太空大地測量法探討台南地區之地表變形
★ 利用衛星影像萃取近岸地形-以台灣北部為例★ 台灣西南部前陸地區演育與古應力分析
★ 桃園臺地群地表變形與地下構造之研究★ 應用永久散射體差分干涉法觀測台灣北部地區之地表變形
★ 台灣東部縱谷南端之活動構造研究★ Seismic hazard assessment in Taiwan: Insights from historical seismicity and radar interferometry analyses
★ 台北盆地及周圍山區之現今地表變形研究★ 利用永久性散射體差分干涉法探討台南地區之地殼形變
★ 臺灣南部橫貫公路向陽-初來段之構造與邊坡穩定★ 莫拉克風災山崩區域之地質構造與大地應力分析
★ 台灣中部埔里盆地的構造活動: 衛星遙測和野外觀測★ 恆春半島的構造地形演化
★ 青藏高原東緣龍門山造山帶與四川前陸盆地間之構造演化★ 利用測地資料分析花東縱谷北段之地殼變形
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地表的侵蝕作用通常會伴隨相對的地體抬升回饋;因此,陡峭的地形往往發生在地表抬升相對快速的地區。藉由河流會隨地形發育而調整其坡度和集水面積的特性,本研究萃取定量的河流參數並導入水力侵蝕物理模型及地形計測方法,嘗試藉由地形分析,探討地表抬升速率與大地構造之關係。
本研究以台灣中央山脈東翼的18條主要水系為研究區域。由於中央山脈東翼為台灣全區年齡最老的區域,因此,其地層完整記錄了台灣基盤抬升的歷史。雖然近年來應用大地測量技術探測地表變形的方法日漸普及,但是此法僅侷限於現今的變形觀測,對於長時間尺度的地表抬升觀測記錄卻依舊缺乏。水系可完整記錄地形的演變歷史,其觀測時間尺度可溯及數千年甚至數萬年,本研究因此利用河流水力基盤侵蝕模型(Stream power bedrock incision model)及集水區不對稱性方法(Drainage basin asymmetry method),期望藉由一系列之計算分析,了解較長時間尺度的地體抬升資訊。
河流水力基盤侵蝕模型可以有效反映各個集水區的相對抬升資訊,而集水區不對稱性方法則可反應垂直於水流方向的相對抬升情形。綜合以上方法研究結果顯示,本研究區的北部及中部相對抬升較為快速。比對三角測量所測得之近期地表抬升率、鋯石核飛跡定年(zircon fission-track)所測得之長時間尺度地表剝蝕率以及現今的地表高程,皆可發現中央山脈北部及中部的抬升和剝蝕速率都相對較為快速。顯示不同時間尺度的抬升及剝蝕率有相當高的一致性。另外,此兩區相對抬升快速的區域其緯度與台灣西部的基盤高區(觀音高區及北港高區)相當,暗示此兩區的快速抬升與基盤高區可能有密切的關係。就地體構造的觀點,由於菲律賓海板塊向北隱沒與弧後(間)擴張作用,造成宜蘭平原陷落,連帶使得本研究區北側的地形向北傾斜、高差明顯,河流下切作用相對快速;再加上季風與地形雨的影響,使得此區地表侵蝕嚴重。綜合以上因素,河流的下切與季風及地形雨的影響,亦為觸發北部研究區地表相對抬升快速的可能原因。
摘要(英) Mass redistribution by erosion represents a governing force in the tectonic evolution of orogenic systems and this process makes the steepest landscapes associated with regions of rapid rock uplift and it could exert a primary control revealing the uplift evolution. The eroded materials from the orogens are generally carried away by the numerous rivers originated in the mountain belts. Therefore, these rivers and their longitudinal profiles record and reflect the changes in landscape. Based on this theory, parameterization of the information of the streams could reveal meaningful geological information in the active tectonic regions.
This study chose 18 drainage basins in the eastern flank of the Central Range in Taiwan as the study area, which is the oldest part of Taiwan and recorded complex uplift history. Although many geodetic measurements have been recently applied to reveal the uplift rates in the Taiwan island, they are often difficult to obtain the uplift history of larger time scale. In order to understand this complex history and the relationship between the geomorphology and tectonics, two geomorphic analyses, Stream power bedrock incision model and Drainage basin asymmetry method, have been applied.
In Stream power bedrock incision model, the evaluated normalize steepness index (ksn) of each drainage basin is directly proportional to uplift rate of each drainage basin. Whereas in Drainage basin asymmetry method, the calculated asymmetry factor (AF) of each drainage basin is developed to detect tectonic tilting transverse to flow within each drainage basin. The results reveal that there are two obviously relative high uplift zones: the northern-and the central part of the eastern Central Range. The identified high uplift zones coincide with the high uplift zones identified from modern uplift rate obtained by triangulation network survey data, and long-term denudation rate inferred from zircon fission-track data. The fast uplift rates in these two zones could be attributed to the impinging basement highs of Taiwan orogen, the Kuanyin and Peikang highs. Aside from the two high uplift zones, the subduction of the Philippine Sea Plate cause the Okinawa Trough spreading which develops upon the attenuated crust of the foundered orogen and spears into the Taiwan orogen at the Ilan Plain. The subsidence of the Ilan Plain promote serious incision in the very northern part of the study area which make the landscape tilting northward in the northernmost Central Range. Couple with high annual precipitation in the same area, the erosion might feedback to the orogenic system and promote further uplift.
關鍵字(中) ★ 集水區不對稱性方法
★ 河流水力基盤侵蝕模型
關鍵字(英) ★ Stream power law
★ Drainage basin asymmetry method
論文目次 摘要 ………………………………………………………………………………………… i
Abstract ……………………………………………………………………………………… ii
Acknowledgements ………………………………………………………………………… iv
Contents …………………………………………………………………………………….. v
List of Figures ……………………………………………………………………………… vii
List of Tables ……………………………………………………………………………….. xi
List of Symbols …………………………………………………………………………….. xii
1 Introduction ……………………………………………………………………………... 1
2 Geodynamical and geological background ……………………………………………. 4
2.1 Geodynamical context …………………………………………………………….. 4
2.2 Geological context ………………………………………………………………... 5
2.3 Study area …………………………………………………………………………. 7
3 Previous studies ………………………………………………………………………... 12
4 Theoretical framework ………………………………………………………………... 18
4.1 Stream power bedrock incision model …………………………………………... 18
4.1.1 Model derivation ………………………………………………………………… 19
4.1.2 Applying to river profiles ……………………………………………………….. 22
4.1.3 Topographic implications ………………………………………………………. 23
4.1.4 Erosion coefficient ………………………………………………………………. 25
4.2 Drainage basin asymmetry method ……………………………………………… 27
5 Data and analyses conducted …………………………………………………………. 30
5.1 Data ……………………………………………………………………………… 30
5.2 Analyses conducted ……………………………………………………………… 30
5.2.1 Calculating steepness index (ksn) ……………………………………………… 31
5.2.2 Calculating asymmetry factor (AF) …………………………………………… 32
6 Results ………………………………………………………………………………….. 35
6.1 Stream power bedrock incision model …………………………………………... 35
6.1.1 Longitudinal profiles ……………………………………………………………. 35
6.1.2 Slope-area plot …………………………………………………………………… 35
6.1.3 Normalize steepness index (ksn) ……………………………………………….. 36
6.2 Drainage basin asymmetry method ……………………………………………… 37
6.3 Geomorphic information from combining ksn and AF indices …………………... 37
7 Discussion ………………………………………………………………………………. 61
7.1 Limitations of the Stream power bedrock incision model ………………………. 61
7.2 Jumping data in slope-area plot ………………………………………………..... 62
7.3 Previous researches about uplift rate/denudation rate in Taiwan ………………... 66
7.3.1 Uplift rate ………………………………………………………………………… 67
7.3.2 Denudation rate …………………………………………………………………. 67
7.3.3 Data comparison ………………………………………………………………… 68
7.4 Compare to previous studies in Stream power bedrock incision model ……..….. 70
8 Conclusions …………………………………………………………………………….. 93
References ………………………………………………………………………………….. 96
參考文獻 Anderson, R. S., 1994. The growth and decay of the Santa Cruz Mountains, J. Geophys. Res., 99, 20161-20180.
Angelier, J., Barrier, E., and Chu, H. T., 1986. Paleostress trajectories related to plate collision in the Foothills fold-thrust belt of Taiwan, Mem. Geol. Soc. China, 7, 201-217.
Barrier, E., and Angelier, J., 1986. Active collision in eastern Taiwan: the Coastal Range, Tectonophysics, 125(1-3), 39-72.
Beaumont, C., Fullsack, P., and Hamilton, J., 1992. Erosional control of active compressional orogens, in McClay, K. R., ed., Thrust Tectonics: New York, Chapman and Hall, p. 1-18.
Biq, C. C., 1972. Dual-trench structure in the Taiwan-Luzon region, Proc. Geol. Soc. China, 15, 65-75.
Bowin, C., Lu, R. S., Lee, C. S., and Schouten, H., 1978. Plate convergence and accretion in Taiwan-Luzon region, Am. Assoc. Pet. Geol. Bull., 62(9), 1645-1672.
Brocklehurst, S. H., and Whipple, K. X., 2002. Glacial erosion and relief production in the Eastern Sierra Nevada, California, Geomorphology, 42, 1-24.
Chai, B. H. T., 1972. Structure and tectonic evolution of Taiwan, Am. J. Sci., 272(5), 389-442.
Chen, H., 1984. Crustal uplift and subsidence in Taiwan: an account based upon retriangulation results, Special Publ. Central Geol. Survey, 3, 127-140.
Chen, C. H., 1990. Igneous rocks of Taiwan, Central Geological Survey, Ministry of Economic Affairs, Taipei, R. O. C., 137pp.
Chen, Y. C., Sung, Q. C., Chen, C. N., 2006. Stream-power incision model in non-steady-state mountain ranges: An empirical approach, Chinese Sci. Bull., 51(22), 2789-2794.
Dadson, S. J., Hovius, N., Chen, H., Dade, B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648-651.
Duvall, A., Kirby, E., and Burbank, D., 2004. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California, J. Geophys. Res., 109(F03002), doi:10.1029/2003JF000086.
Flint, J. J., 1974. Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969-973.
Foley, M., 1980. Bed-rock incision by streams, Geol. Soc. Am. Bull., 91, 2189-2213.
Fuller, C. W., Willett, S. D., Fisher, D., Lu, C. Y., 2006. A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry, Tectonophysics, 425(1-4), 1-24.
Gardner, T. W., Back, W., Bullard, T. F., Hare, P. W., Kesel, R. H., Lowe, D. R., Menges, C. M., Mora, S. C., Pazzaglia, F. J., Sasowski, I. D., Troester, J. W., and Wells, S. G., 1987. Central America and the Caribbean, in Graf, W. L., ed., Geomorphic Systems of North America, Centennial Special Volume 2: Boulder, CO., Geological Society of America, p. 343-402.
Hack, J. T., 1957. Studies of longitudinal stream profiles in Virginia and Maryland, U.S. Geol. Surv. Prof. Pap., 294-B, 45-97.
Hack, J. T., 1973. Stream-profile analysis and stream-gradient indices, J. Res. U. S. Geol. Surv., 1, 421-429.
Hancock, G. S., Anderson, R. S., and Whipple, K. X., 1998. Beyond power: Bedrock river incision process and form, in Tinkler, K. J., and Wohl, E. E., ed., Rivers Over Rock: Fluvial Processes in Bedrock Channels: Washington, D. C., American Geophysical Union, p. 35-60.
Hancock, G. S., and Anderson, R. S., 2002. Numerical modeling of fluvial terrace formation in response to oscillating climate, Geol. Soc. Am. Bull., 114(9), 1131-1142.
Harbor, D. J., 1998. Dynamic equilibrium between an active uplift and the Sevier River, Utah, J. Geol., 106(2), 181-194.
Hare, P. W., and Gardner, T. W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica, in Morisawa, M., and Hack, J. T., ed., Tectonic Geomorphology: Proceedings of the 15th Annual Binghamton Geomorphology Symposium, September 1984: Boston, Allen & Unwin, p. 75-104.
Ho, C. S., 1976. Foothills tectonics of Taiwan, Bull. Geol. Surv. Taiwan, 25, 9-28.
Ho, C. S., 1982. Tectonic Evolution of Taiwan: Explanatory text of the tectonic map of Taiwan, Central Geological Survey, Ministry of Economic Affairs, Taipei, R. O. C., 126pp.
Ho, C. S., 1986a. An introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan (2nd ed.), Central Geological Survey, Ministry of Economic Affairs, Taipei, R. O. C., 163pp.
Ho, C. S., 1986b. A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125(1-3), 1-16.
Hodges, K., Wobus, C., Ruhl, K., Schildgen, T., and Whipple, K., 2004. Quaternary deformation, river steepening and heavy precipitation at the front of the Higher Himalayan ranges: Earth Planet. Sci. Lett., 220(3-4), 379-389, doi:10.1016/S0012-821X(04)00063-9.
Howard, A. D., and Kerby, G., 1983. Channel changes in badlands, Geol. Soc. Am. Bull., 94, 739-752.
Howard, A. D., 1994. A detachment-limited model of drainage basin evolution, Water Resour. Res., 30(7), 2261-2285.
Howard, A. D., Dietrich, W. E., and Seidl, M. A., 1994. Modeling fluvial erosion on regional to continental scales, J. Geophys. Res., 99, 13, 971-13986.
Hsu, T. L., 1976. Neotectonics of the Longitudinal Valley, eastern Taiwan, Bull. Geol. Surv. Taiwan, 25, 53-62.
Huang, S. T., Ting, H. H., Chen, R. C., Chi, W. R., Hu, C. C., and Shen, H. C., 1992. Basinal framework and tectonic evolution of offshore northern Taiwan, Pet. Geol. Taiwan, 27, 47-71.
Karig, D. E., 1973. Plate convergence between the Philippine and the Ryukyu Islands, Mar. Geol., 14, 153-168.
Keller, E. A., and Pinter, N., 1996. Active tectonics: Earthquake, Uplift, and Landscape: Upper Saddle River, New Jersey, Prentice Hall, 362pp.
Kirby, E., Whipple, K. X., Burchfiel, B. C., Tang, W., Berger, G., Sun, Z., and Chen, Z., 2000. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau, Geol. Soc. Am. Bull., 112, 375-393.
Kirby, E., 2001. Structural, thermal and geomorphic evolution of the eastern margin of the Tibetan Plateau, Ph.D. thesis, Mass. Inst. of Technol., Cambridge, 211pp.
Kirby, E., and Whipple, K., 2001. Quantifying differential rock-uplift rates via stream profile analysis, Geology, 29(5), 415-418.
Kirby, E., Reiners, P., Krol, M., Hodges, K., Whipple, K., Farley, K., Tang, W., and Chen, Z., 2002. Late Cenozoic uplift and landscape evolution along the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology, Tectonics, 21(1), 1001, doi:10.1029/2000TC001246.
Kirby, E., Whipple, K. X., Tang, W., and Chen, Z., 2003. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles, J. Geophys. Res., 108(B4), 2217, doi:10.1029/2001JB000861.
Kizaki, K., 1986. Geology and tectonics of the Ryukyu islands, Tectonophysics, 125(1-3), 193-207.
Lavé, J., and Avouac, J. P., 2000. Active folding of fluvial terraces across the Siwalik Hills, Himalayas of central Nepal, J. Geophys. Res., 105(B3), 5735-5770.
Lavé, J., and Avouac, J. P., 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal, J. Geophys. Res., 106(B11), 26561-26591.
Lee, C. T., and Wang, Y., 1988. Quaternary stress changes in northern Taiwan and their tectonic significance, Proc. Geol. Soc. China, 31, 154-168.
Leopold, L. B., and Maddock, T., 1953. Hydraulic geometry of streams and some physiographic implications, U.S. Geol. Surv. Prof. Pap., 252, 57.
Leopold, L. B., and Miller, J. P., 1956. Ephemeral streams-Hydraulic factors and their relation to the drainage net, U.S. Geol. Surv. Prof. Pap., 282A, 1-37.
Letouzey, J., and Kimura, M., 1985. The Okinawa Trough genesis, structure and evolution of the backarc basin developed in a continent, Mar. Pet. Geol., 2(2), 111-130.
Letouzey, J., and Kimura, M., 1986. The Okinawa Trough: Genesis of a backarc basin developing along a continental margin, Tectonophysics, 125, 209-230.
Li, Y. H., 1976. Denudation of Taiwan island since the Pliocene Epoch, Geology, 4(2), 105-107.
Liang, W. T., Lee, J. C., and Kuo, B. Y., 2005. Left-lateral strike-slip faulting in Ilan: Lateral extrusion at the transition between Taiwan mountain range and the Okinawa Trough, Geodynamics and Environment in East Asia International Conference & 5th Taiwan-France Earth Science Symposium, Taitung, R. O. C., p. 104-108.
Lin, A. T., 2001. Cenozoic stratigraphy and tectonic development of the West Taiwan Basins, Ph.D. thesis, University of Oxford, Oxford, U.K., 253pp.
Lin, A. T., and Watts, A. B., 2002. Origin of the western Taiwan basin in orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., 107, ETG2-1-ETG2-19.
Lin, A. T., Watts, A. B., and Hesselbo, S. P., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Res., 15, 453-478.
Liu, C. C., and Yu, S. B., 1990. Vertical crustal movements in eastern Taiwan and their tectonic implications, Tectonophysics, 183(1-4), 111-119.
Liu, C. C., 1995. The Ilan plain and the southwestward extending Okinawa Trough, J. Geol. Soc. China, 38, 229-242.
Liu, T. K., Chen, Y. G., Chen, W. S., and Jiang, S. H., 2000. Rates of cooling and denudation of the early Penglai orogeny, Taiwan as assessed by fission-track constraints, Tectonophysics, 320, 69-82.
Liu, T. K., Hsieh, S., Chen, Y. G., and Chen, W. S., 2001. Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating, Earth Planet. Sci. Lett., 186, 45-56.
Moglen, G. E., and Bras, R. L., 1995. The effect of spatial heterogeneities on geomorphic expression in a model of basin evolution, Water Resour. Res., 31, 2613-2623.
Molnar, P., and England, P., 1990. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?, Nature, 346, 29-34.
Montgomery, D. R., and Foufoula-Georgiou, E., 1993. Channel network representation using digital elevation models, Water Resour. Res., 29, 3925-3934.
Montgomery, D. R., and Gran, K. B., 2001. Downstream variations in the width of bedrock channels, Water Resour. Res., 37, 1841-1846.
Pazzaglia, F. J., Gardner, T. W., and Merritts, D. J., 1998. Bedrock fluvial incision and longitudinal profile development over geologic time scales determined by fluvial terraces, in Tinkler, K. J., and Wohl, E. E., ed., Rivers Over Rock: Fluvial Processes in Bedrock Channels: Washington, D. C., American Geophysical Union, p. 207-235.
Roe, G. H., Montgomery, D. R., and Hallet, B., 2002. Effects of orographic precipitation variations on the concavity of steady-state river profiles, Geology, 30(2), 143-146.
Roe, G. H., Montgomery, D. R., and Hallet, B., 2003. Orographic precipitation and the relief of mountain ranges, J. Geophys. Res., 108(B6), 2315, doi:10.1029/2001JB001521.
Roecker, W. S., Yeh, Y. H., and Tsai, Y. B., 1987. Three dimensional P and S wave velocity structures beneath Taiwan: Deep structure beneath an arc-continental collision, J. Geophys. Res., 92, 10547-10570.
Rosenbloom, N. A., and Anderson, R. S., 1994. Hillslope and channel evolution in a marine terraced landscape, Santa Cruz, California, J. Geophys. Res., 99, 14013-14029.
Seidl, M. A., and Dietrich, W. E., 1992. The problem of channel erosion into bedrock, Catena Suppl., 23, 101-124.
Seidl, M. A., Dietrich, W. E., and Kirchner, J. W., 1994. Longitudinal profile development into bedrock: An analysis of Hawaiian channels, J. Geol., 102, 457-474.
Seno, T., 1977. The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophysics, 42(2-4), 209-226.
Sklar, L., and Dietrich, W. E., 1998. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, in Tinkler, K. J., and Wohl, E. E., ed., Rivers Over Rock: Fluvial Processes in Bedrock Channels: Washington, D. C., American Geophysical Union, p. 237-260.
Sklar, L. S., and Dietrich, W. E., 2001. Sediment and rock strength controls on river incision into bedrock, Geology, 29(12), 1087-1090.
Sklar, L., 2003. The influence of grain size, sediment supply, and rock strength on rates of river incision into bedrock, Ph. D. thesis, University of California, Berkeley, 343pp.
Slingerland, R. S., Willett, S. D., and Hennessey, H. L., 1997. A new fluvial bedrock erosion model based on the work-energy principle, Eos Trans. AGU, 78(46), Fall Meet. Suppl., F299.
Slingerland, R. S., Willett, S. D., and Hovius, N., 1998. Slope-area scaling as a test of fluvial bedrock erosion laws (abstract), Eos Trans. AGU, 79(45), Fall Meet. Suppl., 358.
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J., 2000. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino Triple Junction region, northern California, Geol. Soc. Am. Bull., 112(8), 1250-1263.
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merrits, D. J., 2003a. Channel response to tectonic forcing: Field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California, Geomorphology, 53, 97-127.
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merrits, D. J., 2003b. Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem, J. Geophys. Res., 108(B2), 2117, doi:10.1029/2001JB001655.
Stock, J. D., and Montgomery, D. R., 1999. Geologic constraints on bedrock river incision using the stream power law, J. Geophys. Res., 104, 4983-4993.
Stock, J. D., and Dietrich, W. E., 2003. Valley incision by debris flows: Evidence of a topographic signature, Water Resour. Res., 39(4), doi:10.1029/2001WR001057.
Stock, J. D., Montgomery, D. R., Collins, B. D., Dietrich, W. E., and Sklar, L., 2005. Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows, Geol. Soc. Am. Bull., 117(11/12), 174-194, doi:10.1130/B25560.1.
Suppe, J., 1980. Imbricate structure of Western Foothills belt, south-central Taiwan, Pet. Geol. Taiwan, 17, 1-16.
Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67-89.
Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-33.
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I., 1989. Scaling and elevation in river networks, Water Resour. Res., 25, 2037-2051.
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I., 1991. On the extraction of channel networks from digital elevation data, Hydrol. Processes, 5(1), 81-100.
Teng, L. S., 1987. Tectonostratigraphic facies and geologic evolution of the Coastal Range, eastern Taiwan, Mem. Geol. Soc. China, 8, 229-250.
Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183(1-4), 57-76.
Teng, L. S., Chen, C. H., Liu, T. K., Juang, W. S., and Chen, J. C., 1992. Plate kinematic model for late Cenozoic arc magmatism in northern Taiwan, J. Geol. Soc. China, 35, 1-18.
Teng, L. S., 1996. Extensional collapse of the northern Taiwan mountain belt, Geology, 24(10), 949-952.
Tsai, Y. B., 1978. Plate subduction and the Plio-Pleistocene orogeny in Taiwan, Pet. Geol. Taiwan, 15, 1-10.
Tsai, Y. B., 1986. Seismotectonics of Taiwan, Tectonophysics, 125(1-3), 17-37.
Tucker, G. E., 1996. Modeling the regional-scale interaction of climate, tectonics and topography, Pennsylvania State University Earth System Science Center Technical Report, 96-003, 267.
Tucker, G. E., and Slingerland, R., 1996. Predicting sediment flux from fold and thrust belts,
Basin Res., 8, 329-349.
Tucker, G. E., and Bras, R. L., 2000. A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resour. Res., 36, 1953-1964.
Tucker, G. E., 2004. Drainage basin sensitivity to tectonic and climatic forcing: Implications of a stochastic model for the role of entrainment and erosion thresholds, Earth Surface Processes and Landforms, 29, 185-205.
Viallon, C., Huchon, P., and Barrier, E., 1986. Opening of the Okinawa basin and collision in Taiwan: a retreating trench model with lateral anchoring, Earth Planet. Sci. Lett., 80(1-2), 145-155.
Whipple, K. X., and Tucker, G. E., 1999. Dynamics of the stream-power river incision model: implications for the height limits of mountain ranges, landscape response time scales, and research needs, J. Geophys. Res., 104, B8, 17661-17674.
Whipple, K. X., Hancock, G. S., and Anderson, R. S., 2000. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geol. Soc. Am. Bull., 112(3), 490-503.
Whipple, K. X., 2001. Fluvial landscape response time: how plausible is steady-state denudation?, Am. J. Sci., 301, 313-325.
Whipple, K. X., and Tucker, G. E., 2002. Implications of sediment-flux-dependent river incision models for landscape evolution, J. Geophys. Res., 107(B2), 2039, doi:10.1029/2000JB000044.
Willett, S. D., Slingerland, R., and Hovius, N., 2001. Uplift, shortening, and steady state topography in active mountain belts, Am. J. Sci., 301, 455-485.
Willett, S. D., and Brandon, M. T., 2002. On steady states in mountain belts, Geology, 30(2), 175-178.
Willett, S. D., Fisher, D., Fuller, C., Yeh, E. C., and Lu, C. Y., 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry, Geology, 31(11), 945-948.
Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I., 1990. A model of river basin evolution, Eos Trans. AGU, 71, 1806-1807.
Willgoose, G., Bras, R. L., and Rodriguez-Tturbe, I., 1991. A couple channel network growth and hillslope evolution model: I. Theory: Water Resour. Res., 27, 1671-1684.
Willgoose, G., 1994. A physical explanation for an observed-slope-elevation relationship for catchments with declining relief, Water Resour. Res., 30, 151-159.
Wobus, C. W., Hodges, K. V., and Whipple, K. X., 2003. Has focused denudation sustained active thrusting at the Himalayan topographic front?, Geology, 31, 861-864.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D., 2006a. Tectonics from topography: Procedures, promise, and pitfalls, Spec. Pap. Geol. Soc. Am., 398, 55-74, doi:10.1130/2006.2398(04).
Wobus, C. W., Crosby, B. T., and Whipple, K. X., 2006b. Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution, J. Geophys. Res., 111(F02017), doi:10.1029/2005JF000406.
Wolman, M. G., and Miller, J. P., 1960. Magnitude and frequency of forces in geomorphic processes, J. Geol., 68, 54-74.
Wu, F. T., 1978. Recent tectonics of Taiwan, J. Phys. Earth, 26, s265-s299.
Yang, K. M., Ting, H. H., and Yuan, J., 1991. Structural styles and tectonic modes of Neogene extensional tectonics in south-western Taiwan: implications for hydrocarbon exploration, Pet. Geol. Taiwan, 26, 1-31.
Yeh, Y. H., Barrier, E., Lin, C. H., and Angelier, J., 1991. Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophysics, 200, 267-280.
Yu, S. B., Chen, H. Y., and Kuo, L. C., 1997. Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59.
Zhou, D., Yu, H. S., Xu, H. H., Shi, X. B., and Chou, Y. W., 2003. Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan, Tectonophysics, 374(3-4), 115-134.
指導教授 張中白(Chung-Pai Chang) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明