參考文獻 |
Aral, M. M., and B.-Sh. Liao, 1996. Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficient. J. Hydrol. Eng., 1(1): 20-32.
Barry, D. A., and G. Sposito., 1989. Analytical solution of a convection
-dispersionmodel with time-dependent transport coefficients. Water Resour. Res., 25(12): 2407-2416.
Bear, J., 1979. Hydraulics of Groundwater, 569 pp., McGraw-Hill, New York.
Bedient P. B., Hanadi S. R., Charles J. N., 1994. Ground Water Contamonation, Prentice-Hall,Inc.,126 pp.
Bruggeman G. A., 1999. Analytical solution of geohydrological problems, Elsevier, 478 pp.
Chen, J. S., C. W. Liu, H. T. Hsu, and C. M. Liao, 2003. A Lapace transformed power series solution for solute transport in a convergent flow field with scale-dependent dispersion. Water Resour. Res., 39(8): doi: 10.1029/2003WR002299
Chen, J. S. , C. P. Liang, C. Y. Chen, and C. W. Liu., 2007. Composite analytical solutions for a soil vapor extraction system, Hydrological Processes : in press, (SCI )
Crump, K. S., 1976. Numerical inversion of Lap lace transforms using a Fourier series apporoximation. J. Assoc. Comput. Mach., 23(1): 89-96.
De hoog, F. R., J. H. Knight, and A.N. Stokes., 1982. An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Stat. Cmput., 3(3): 357-366
Domenico, P. A., and G. A. Robbins., 1984. A dispersion scale effect in model calibrations and field tracer experiments. J. Hydrol., 70: 123-132.
Fetter, C. W., 1994. Applied Hydrogeology, Macmillan College Publishing Company, Inc., 691 pp.
Freyberg, D. L., 1986. A natural gradient experiment on solute transport in a sand aquifer, 2, Spatial moments and the advection and dispersion of nonreactive tracers. Water Resour. Res., 22: 2031-2046.
Gelhar, L. W., Mantoglou, A., Welty, C. and Rehfeldt, K. R., 1985. A Review of Field-scale Physical Solute Transport Processes in Saturated and Unsaturated Porous Media. Technical Report EPRI EA-4190, Electrical Power Research Institute, Palo Alto, 116 pp.
Gelhar, L. W., 1986. Stochastic subsurface hydrology from theory to applications. Water Resour. Res., 22(9): 135–145.
Gelhar, L. W., C. Welty, and K. R. Rehfeldt., 1992. A critical review of data on field-scale dispersion in aquifer. Water Resour. Res., 28(7): 1955-1974.
Huang, K.-L., M. T. van Genuchten, and R.-D. Zhang, 1996. Exact solutions for one-dimensional transport with asymptotic scale-dependent dispersion. Appl. Math. Modelling, 20: 298-308.
Hunt, B., 1998. Contaminant source solutions with scale-dependent dispersivities. J. Hydrol. Eng., 3(4): 268-275.
Jayawardena, A. W., Lui, P. H., 1984. Numerical solution of the dispersion equation using a variable dispersion coefficient; method and applications. Hydrol. Sci. J., 29 (3): 293-309.
Jury, W. A., Shoude, P. H. and Stolzy, L. H., 1982. A field test of the transfer function model for predicting solute transport. Water Resour. Res., 18: 369-375
Kreyszig E., 1999. Advanced Engineering Mathematics, John Wily & Sons, Inc.
Logan, L. D., 1996. Solute transport in porous media with scale-dependent dispersion and periodic boundary conditions. J. Hydrol., 184: 261-276.
Mishra, S., Parker, J.C., 1990. Analysis of solute transport with a hyperbolic scale dependent dispersion model. Hydrol. Proc., 4 (1): 45-57.
Molz, F. J., O. Güven and J. G. Melville, 1983. An examination of scale-dependent dispersion coefficients. Ground Water, 21 (6): 1701-1711.
Pickens, J. F. and G. E. Grisak, 1981a. Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res., 17(4): 1191-1211.
Pickens, J. F. and G. E. Grisak, 1981b. Modelling of scale-dependent dispersion in a hydrogeological system, Water Resour. Res., 17(6): 1701-1711.
Pang, L. and M. E. Close, 1999. Field-scale physical nonrquilibrium transport in an alluvial gravel aquifer. J. Contam. Hydrol., 38(4): 447-464.
Pang, L., and B. Hunt, 2001. Solutions and verification of a scale-dependent dispersion model. J. Contam. Hydrol., 53: 21-39.
Ptak, T., and Teutsch, G., 1994. Forced and natural gradient tracer tests in a highly heterogeneous porous aquifer. Instrumentation and measurements. J. Hydrol., 159: 79-104.
Roco, M. C., J. Khadilkar, and J. Zhang, 1989. Probabilistic approach for transport of contaminants through porous media. Int. J. Numer. Methods Fluids, 9(12): 1431-1451.
Schwartz, F. W. and Zhang, Hubao, 2003. Fundamental of Groumd Water, John & Sons, Inc. 451.
Wang Z. T., 2001. An analytical solution for an exponential-type dispersion process. Appl. Math. and Mech., 22(3):368-371.
Wheatcraft, S. W. and S. W. Tyler, 1988. Explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractral geometry. Water Resour. Res., 24(4): 566-578.
Yates, S. R., 1990. An analytical solution for one-dimension transport in
heterogeneous porous media. Water Resour. Res., 26(10): 2331-2338.
Yates, S. R., 1992. An analytical solution for one-dimension transport in porous media with an exponential dispersion function. Water Resour. Res., 28(2): 149-2154.
Zhang, R., K. Huang, and J. Xiang, 1994, Solute movement through homogeneous and heterogeneous soil columns. Adv. Water Resour., 17(5): 317-324.
Visual Numerical, Inc. 1994. IMSL User’s Manual. Houston, Tex., 1:159-161 |