博碩士論文 946204011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.161.118.57
姓名 張舜琦(Shun-chi Chang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 土石流潛感分析-以石門水庫集水區為例
(Debris flow susceptibility analysis– A case study in Shihmen Reservoir Watershed)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對大漢溪流域石門水庫上游集水區,以溪床坡度及地形隘口為主要依據定義土石流及非土石流溪流之溢流點,並以溢流點以上之集水區為單位計算集水面積、主流長度、形狀係數、集水區相對高度、溪床坡度、殘土率、發生區面積、崩塌地面積、事件總雨量等因子,代入判別分析、羅吉斯迴歸和模糊類神經網路輸出各土石流潛感值與分類結果。本研究主要分為歷年土石流潛感分析與艾利颱風誘發土石流潛感分析兩部份。
研究中使用水保局公布之土石流潛勢溪流為歷年土石流圖層,使用判別分析、羅吉斯迴歸和模糊類神經網路進行歷年土石流潛感分析,得到之總體正確率分別為76.8%、78.6%和94.6%。其中模糊類神經網路在歷年土石流潛感分析中有最高之判釋正確率。
艾利颱風誘發土石流潛感分析主要是依據事件前後衛星影像變異點決定土石流溪流,以溢流點以上集水區為單位進行分析。得到判別分析、羅吉斯迴歸和模糊類神經網路三種分析方法的總體正確率為94.1%、100.0%和98.5%的高值。總體而言羅吉斯迴歸得到最好的判釋結果。
比較歷年土石流與艾利颱風誘發土石流潛感分析結果可以發現,艾利颱風誘發土石流潛感分析可以得到較好之正確率結果。事件誘發土石流潛感分析中除了對土石流及非土石流溪流的認定較為確實外,同時加入了雨量因子,因此可以得到較好的分析結果。在歷年土石流潛感分析中,土石流圖層多為包含保全對象的土石流潛勢溪流,然而本研究並未使用保全因子,因此得到較事件誘發土石流潛感分析略差的分析結果。
摘要(英) In this study, factors used in the susceptibility analysis includes the watershed area, the length of main stream, the shape factor, relative height of watershed, slope of main stream, hypsometric integral, area of watershed slope great than 20°, area of landslide, and total rainfall of a storm event. These factors were calculated for each unit of a sub-watershed which is defined by an overflow point. Then these factors were used as input into discriminant analysis, logistic regression and fuzzy neural network to evaluate sub-watershed’s debris flow susceptibility in Shihmen Reservoir Watershed. This study focus on two different kind of cases: historical debris flow susceptibility analysis and the AERE typhoon induced debris flow susceptibility analysis.
In the historical debris flow susceptibility analysis, the potential debris flow streams were acquired from the Soil and Water Conservation Bureau, Taiwan (WCB). The overall accuracy of discriminant analysis, logistic regression, and fuzzy neural Network are 76.8%, 78.6%, and 94.6%, respectively. Fuzzy neural network has the highest overall accuracy in historical debris flow susceptibility analysis.
The debris flows induced by AERE typhoon are base on the changes detected from satellite images before and that after the typhoon event. The overall accuracy of discriminant analysis, logistic regression and fuzzy neural network are 94.1%, 100.0%, and 98.5%, respectively. Logistic regression method has the best performance in AERE typhoon induced debris flow susceptibility analysis.
From the comparison of historical debris flow susceptibility analysis and AERE typhoon induced debris flow susceptibility analysis, we can find that AERE typhoon induced debris flow susceptibility analysis has better accuracy. This is because the AERE typhoon induced debris flow susceptibility analysis has more definite debris flow data and also because the rainfall data as an import factor are considered. On the other hand and in the historical debris flow susceptibility analysis, most of debris flow streams are not well defined and mixed with the consideration of property lose, therefore , a less accuracy was presented in the result of analysis.
關鍵字(中) ★ 模糊類神經網路
★ 羅吉斯迴歸
★ 判別分析
★ 潛感
★ 土石流
關鍵字(英) ★ fuzzy neural network
★ logistic regression
★ discriminant analysis
★ susceptibility
★ debris flow
論文目次 中文摘要...............................................................................................................I
英文摘要..............................................................................................................II
目錄....................................................................................................................IV
圖目...................................................................................................................VII
表目....................................................................................................................IX
第一章 緒論......................................................................................................1
1.1 研究動機與目的...................................................................................1
1.2 前人研究...............................................................................................1
1.2.1 國內土石流潛勢分析...............................................................1
1.2.1.1有保全因子之潛勢分析.............................................1
1.2.1.2無保全因子之潛勢分析.............................................4
1.2.2 文獻回顧....................................................................................5
1.2.2.1專家評分法.................................................................5
1.2.2.2定量法..........................................................................6
1.2.2.3相關因子與研究方法探討.........................................7
1.3 研究架構與流程..................................................................................11
第二章 研究方法............................................................................................13
2.1 判別分析.............................................................................................13
2.2 羅吉斯迴歸.........................................................................................16
2.3 模糊類神經網路.................................................................................20
2.3.1 倒傳遞類神經網路.................................................................20
2.3.1.1學習過程...................................................................22
2.3.1.2回想過程...................................................................24
2.3.2 模糊理論..................................................................................24
2.3.2.1模糊隸屬函數與模糊化...........................................26
2.3.2.2解模糊.......................................................................27
2.3.2.3灰色分析與灰色聚類...............................................27
2.3.3 模糊類神經網路......................................................................29
第三章 資料蒐集與處理................................................................................31
3.1 研究區概述.........................................................................................31
3.2 資料蒐集與處理.................................................................................31
3.2.1 水系資料..................................................................................35
3.2.2 土石流與非土石流圖層.........................................................35
3.2.3 定義土石流與非土石流之溢流點.........................................39
3.3 土石流潛感因子處理.........................................................................42
第四章 土石流潛感分析成果及評估...........................................................47
4.1成果評估方法......................................................................................47
4.1.1分類誤差矩陣表.......................................................................47
4.1.2 ROC曲線.................................................................................48
4.2 歷年土石流潛感分析結果................................................................49
4.3 艾利颱風誘發土石流之潛感分析結果............................................54
第五章 討論....................................................................................................61
5.1土石流潛感因子特性之探討.............................................................61
5.2不同分析方法之結果比較.................................................................64
5.2.1歷年土石流潛感分析..............................................................64
5.2.2艾利颱風誘發土石流潛感分析..............................................67
5.3歷年土石流與艾利颱風誘發土石流潛感分析之比較.....................69
5.4土石流規模指標與土石流潛感值的關聯分析.................................71
第六章 結論與建議........................................................................................73
6.1 結論.....................................................................................................73
6.2 建議.....................................................................................................74
參考文獻 ..........................................................................................................75
附錄一 歷年土石流潛感分析土石流組與非土石流組因子分布圖...........81
附錄二 艾利颱風誘發土石流潛感分析土石流組與非土石流組因子分布 圖.......................................................................................................87
參考文獻 尹承遠、翁勳政、吳仁明、歐陽湘(1993)台灣土石流之特性,工程地質技術應用研討會論文專集,第70-90頁。
江英政(1998)土石流危險溪流判定之研究,國立台灣大學土木工程學研究所碩士學位論文,共120頁。
行政院農委會(2002)台灣地區土石流危險溪流分布圖。
李心平、張斐章 (1995) 模糊控制理論應用於土石流預警系統之研究,中華水土保持學報,第26卷,第2期,第145-154頁。
吳漢雄、鄧聚龍、溫坤禮(1996)灰色分析入門,高立圖書有限公司,共206頁。
吳輝龍、陳文福、張維訓(2004)集水區地文特性因子與土石流發生機率間相關性之研究-以陳有蘭溪為例,中華水土保持學報,第35卷,第3期,第251-259頁。
林昭遠(2000)集水區地形因子自動萃取之研究-土石流危險溪流判釋之應用,中華水土保持學報,第31卷,第1期,第81-91頁。
林信亨、林美聆(2002)地理資訊系統及類神經網路應用於土石流危險溪流危險度判定,地工技術,第90期,第73-84頁。
邱紹維(2003)灰關聯分析於水庫水質縱合評判之研究-以翡翠與石門水庫為例,國立中央大學應用地質研究所碩士論文,共136頁。
周憲德(2006)桃園縣政府強化地區災害防救計畫-子計畫七:桃園縣山坡地天然災害危險區域疏散避難規劃。
國立中央大學太空及遙測中心(2004)艾莉颱風崩塌地調查專輯報告。
陳順宇(2004)多變量分析三版,台北:華泰書局。
黃俊英(1995)多變量分析,第五版,台北:中國經濟企業研究所。
黃春銘(2005)使用模糊類神經網路進行山崩潛感分析-以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文,共125頁。
詹錢登(1994)土石流危險度之評估與預測,中華水土保持學報,第25卷,第二期,第95-102頁。
詹錢登(1997)土石流概論,共148頁。
葉怡成(2003)類神經網路模式應用與實作,儒林出版社。
楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂(2002)模糊控制理論與技術,全華科技圖書股份有限公司。
楊明德、蘇東青、楊樺芬(2005)草嶺地區土石流潛勢調查與評估,中華水土保持學報,第36卷,第3期,第301-312頁。
經濟部中央地質調查所(2006)土石流地質調查與發生潛勢評估。
鄧聚龍(2000)灰色分析入門,高立圖書有限公司,第1-150頁。
蕭震洋(2003)以類神經網路及數值地型分析潛在危險性的土石流區:南投陳有蘭溪流域為實例,國立台灣海洋大學應用地球物理研究所碩士學位論文,共135頁。
謝正倫、陳禮仁(1993)土石流潛在溪流之危險度評估方法,中華水土保持學報,第24卷,第1期,第13-19頁。
傅裕盛、曹鎮、徐義人(2005)模糊理論應用於土石流危險度分析之研究,中華水土保持學報,第36卷,第2期,第113-123頁。
張永欣(2007)以多變量地質統計方法進行雨量空間內插,國立中央大學應用地質研究所碩士論文,共187頁。
Agresti, A. (2002) Categorical Data Analysis (2nd ed.), New York: John Wiley, 710p.
Bisson, M., Favalli, M., Fornaciai, A., Mazzarini, F., Isola, I., Zanchetta, G., Pareschi, M.T. (2005) A rapid method to assess fire-related debris flow hazhrd in the Mediterranean region: An example from Sicily (southern Italy) , International Journal of Applied Earth Observation and Geoinformation, 7, pp. 217-231.
Cannon, S.H., Garnter, J.E., Parrett, C., Parise, M. (2003) Wildfire-related debris flow generation through episodic progressive sediment bulking processes, western U.S.A., in Ricjenmann, D. and Chen, C.L., eds., Debris-flow hazards mitigation - Mechanics, prediction, and assessment - Proceedings of the Third International Conference on Debris-Flow Hazards Mitigation, Davos, Switzerland, 10-12 Septermber 2003: Rotterdam, A.A. Balkma, pp. 71-82.
Cannon, S.H., Gartner, J.E., Rupert, M.G., Michael, J.A. (2004) Emergency assessment of debris flow hazard from basins burned by the Cedar and Paradise fires of 2003, southern California: U.S. Geological Survey Open File Report 2004-1011.
Chang, T.C. and Chao, R.J. (2006) Application of back-propagation networks in debris flow prediction, Engineering Geology, 85, pp. 270-280.
Davis, J.C. (2002) Statistics and Data Analysis in Geology, 3rd edition, 638, Wiley.
Deng, Z., May, F.E., Lawton, E.C. (1992) Proceedings of the conference on Arid west floodplain management issues; land use and flood damages in arid and semi-arid areas, Conference on Arid west floodplain management issues; land use and flood damages in arid and semi-arid areas, pp. 125-137.
Feinberg, S. (1985) The analysis of cross-classified categorical data (2nd ed.), Cambridge, MA: MIT Press, 198p.
He, Y.P., Xie, H., Cui, P., Wei, F.Q., Zhong, D.L., Gardner, J.S. (2003) Gis-based mapping and zonation of debris flows in Xiaojiang Basin, southwestern China, Environmental Geology, 45, pp. 286-293.
Horton, R.E. (1945) Erosional development of streams and their drainage basin, hydrological approach to quantitative.
Kanungo, D.P., Arora, M.K., Sarlar, S., Gupta, R.P. (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas, Engineering Geology, 85, pp. 347-366.
Lillesand, T.M. and Kiefer, R.W. (2000) Remote sensing and image interpretation, Wiley & Sons, New York, 724p.
Lin, P.S., Lin, J.Y., Hung, J.C., Yang, M.D. (2002) Assessing debris-flow hazard in a watershed in Taiwan, Engineering Geology, 66, pp. 295-313.
Liu, Y., Guo, H.C., Zou, R., Wang, L.J. (2006) Neural network modeling for regional hazard assessment of debris flow in Lake Qionghai Watershed, China, Environmental Geology, 49, pp. 968-976.
Liu, L. and Wang, S. (1995) Fuzzy comprehensive evaluation on landslide and debris flow risk degree in Zaotong, Yunnan, Mountain Research, 13(4), pp. 261-266.
Liu, L. and Wang, S. (1996) Preliminary research of two-level fuzzy comprehensive evaluation on landslide and debris flow risk degree of a district, Journal of Natural Disasters, 5(3), pp. 51-59.
Liu, X., Yue, Z.Q., Tham, L.G., Lee, C.F. (2002) Empirical Assessment of debris flow risk on a regional scale in Yunnan Province, Southwestern China, Environmental Management, 30, 2, pp. 249-264.
Long, J.S. (1997) Regression models for categorical and limited dependent variables, Thousand Oaks, California: Sage Publications, 297p.
Mark R.K. and Ellen S.D. (1995) Statistical and simulation models for mapping debris-flow hazard, Geographical Information Systems in Assessing Natural Hazards, pp.93-106.
Pareschi, M.T., Santacorce, R., Sulpizio, R., Zanchetta, G. (2002) Volcaniclastic debris flows in the Clanio Valley (Campania, Italy) insights for the assessment of hazard potential, Geomorphology, 43, pp. 219-231.
Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of eorsional topography, Bull. Geol. Soc., 56, pp. 275-370.
Su, J., Zhou, X., Fan, S. (1993) A fuzzy set evaluation method of hazard degree of debris flow, Journal of Natural Disasters, 2(2), pp. 83-90.
Swets, J.A. (1988) Measuring the Accuracy of Diagonstic Systems, Science, Vol. 204, No. 4857, pp. 1285-1293.
Takahashi, T. (1981) Debris flows, Annual Rev. of Fluid Mech., 13, pp. 57-77.
Wei, Y., Xie, Y., Wu, Y. (1998) Applications of relativity analysis method and fuzzy synthetical assessment method in classification of dangerous degree of debris flows, Journal of Natural Disasters, 7(2), pp. 109-117.
指導教授 李錫堤(Chyi-tyi Lee) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明