博碩士論文 946204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.147.205.154
姓名 許瑞育(Juiyu Hsu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象
(Stress-dependent fluid flow properties of sedimentaryrocks and overpressure generation )
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 山崩引致之堰塞湖天然壩穩定性之量化分析★ 出磺坑背斜構造發育之三角剪切模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 超額孔隙水壓對於地殼強度扮演了重要的角色,而對超額孔隙水壓最有影響的參數為滲透率、孔隙率以及比儲水係數,其中比儲水係數主要與孔隙的壓縮性有關。本研究以滲透率/孔隙率量測儀(YOKO2),量測砂岩、粉砂岩/頁岩於有效圍壓從3MPa增加到120MPa下岩心的滲透率與孔隙率(岩心取自台灣車籠埔鑽井計畫的A、B井的岩心)。總體而言,砂岩之滲透率範圍為10-13~10-14m2 ,粉砂岩與頁岩之滲透率範圍為10-16~10-19m2 ,粉砂岩/頁岩對於應力的敏感性較砂岩高(即滲透率變化隨應力變化較大)。砂岩、粉砂岩及頁岩其孔隙率範圍分別為15%~19%、8%~11% 以及 13%~14%,根據試驗結果發現不同的岩性,孔隙率對應力的敏感性似乎沒有太大的差異。根據試驗結果發現,滲透率與孔隙率隨應力變化的行為,可利用冪次函數模式或指數函數模式加以描述。利用冪次函數模式或指數函數模式,可以獲得孔隙敏感指數 。由冪次函數所求得的孔隙敏感指數 ,砂岩的範圍為 3.26~5.47 (加壓) 以及2.34~3.08 (解壓); 粉砂岩/頁岩的範圍為 25.98~47.50 (加壓) 以及 6.91~46.43 (解壓) , 值越高,表示越容易產生超額孔隙水壓。根據孔隙率冪次函數模式所推求得的比儲水係數對於應力比較敏感,砂岩的範圍為 ~ ,粉砂岩/頁岩的範圍為 ~  。藉由Gibson方程式中以及利用有限差分法求解,我們可以計算超額孔隙水壓的產生與消散,根據計算結果發現地下流體流動參數由冪次函數模式所求得因沉積物載重造成的超額孔隙水壓,將比利用指數函數模式計算所得之超額孔隙水壓要小,因此,如果要分析地殼中因沉積物載重產生之超額孔隙水壓,應慎選地下流體流動特性之應力依存性模式。
摘要(英) Overpressure plays an important role on thrust faulting of fold-and-thrust belt. In petroleum geology, understanding abnormally high pore pressure is also important for studying primary petroleum migration and drilling, as well as for analyzing sedimentary basins. The parameters which have most influential to overpressure are permeability, porosity and specific storage coefficient.
Accurate measuring of the stress dependent fluid flow properties is essentially important to explore the fluid percolation process in crust. An integrated permeability/porosity measurement system-YOYK2 was utilized to measure the pressure-dependency of permeability and porosity of core samples from Taiwan Chelungpu fault Drilling Project, Hole-A and Hole-B. The measured permeabilities of sandstone and siltstone/shale are 10-13~10-14m2 and 10-16~10-19m2 under confining pressure of 3~120 MPa. The permeability of siltstone and shale is more sensitive to confining pressure than that of sandstone. The measured porosities of sandstone, siltstone and shale under confining pressure of 3~120 MPa are 15%~20%, 8%~11% and 13%~14%, respectively. Meanwhile, different rock types have almost identical pressure-sensitivity of porosity.
Two pressure-dependent models, power law and exponential relation, for describing the pressure-dependent permeability/porosity were used to fit the experiment results. The calibrated porosity sensitivity exponent is estimated to range form 3.26 to 5.47 (loading) and range form 2.34 to 3.08 (unloading) for tested sandstones by using a power law to describe the pressure-dependency of permeability/porosity. The porosity sensitivity exponent is estimated to range from 25.98 to 47.50 (loading) and from 6.91 to 46.43 (unloading) for tested siltstone and shale which is much higher than that of sandstone. The specific storage coefficient (related to the pressure-dependent porosity) also demonstrates more pressure sensitivity for adopting a power law than using an exponential relation. The calculated specific storage is ranged from to for sandstone and from to for siltstone and shale when the confining pressure increasing from 3 MPa to 120 MPa.
The pressure-dependent specific storage coefficient, as well as the permeability/porosity, can be incorporated into a non-linear Gibson equation to calculate the overpressure generation and dissipation by finite difference method. The calculated overpressure using power law to describe the pressure-dependent fluid flow properties is less than the one using exponential relation. Proper selection of the pressure-dependent models of fluid flow properties is critical for calculating the overpressure in crust.
關鍵字(中) ★ 滲透率
★ 流體流動特性
★ 孔隙率
★ 比儲水係數
★ 孔隙水壓
關鍵字(英) ★ TCDP
★ fluid flow properties
★ pore pressure
★ specific storage coefficient
★ porosity
★ permeability
論文目次 摘要 -------------------------------------------------------------------------------------------------------- I
Abstract --------------------------------------------------------------------------------------------------- II
誌謝 ------------------------------------------------------------------------------------------------------ IV
Contents -------------------------------------------------------------------------------------------------- V
List of Figures --------------------------------------------------------------------------------------- VII
List of Tables -------------------------------------------------------------------------------------------- XI
Chapter 1 Introduction -------------------------------------------------------------------------------- 1
1.1 Overpressure generation --------------------------------------------------------------------- 1
1.2 Mechanical mechanism for overpressure generation ----------------------------------- 2
1.3 Gibson’s equation ---------------------------------------------------------------------------- 2
1.4 Nonlinear form of the Gibson’s equation ------------------------------------------------ 3
1.5 Stress-dependent fluid flow properties --------------------------------------------------- 4
1.5.1 Permeability ----------------------------------------------------------------------------- 4
1.5.2 Porosity ---------------------------------------------------------------------------------- 6
1.5.3 Specific storage coefficient ----------------------------------------------------------- 7
1.6 Overpressure in the active fold-and-thrust belt of northwestern Taiwan ------------- 7
Chapter 2 Methodology ------------------------------------------------------------------------------ 10
2.1 Measurement of permeability and porosity ---------------------------------------------- 10
2.1.1 Permeability --------------------------------------------------------------------------- 12
2.1.2 Porosity -------------------------------------------------------------------------------- 13
2.2 Samples --------------------------------------------------------------------------------------- 16
2.3 Numerical modeling of excess pore pressure generation------------------------------- 19
Chapter 3 Measured Fluid Flow Properties ----------------------------------------------------- 22
3.1 Measured Permeability and porosity of sandstone and siltstone/shale --------------- 22
3.2 Pressure sensitivity of permeability and porosity ----------------------------------- 24
3.2.1 Exponential relation and power law of pressure-dependent permeability ---- 24
3.2.2 Exponential relation and power law of pressure-dependent porosity ---------- 27
3.3 Permeability evolution with porosity ----------------------------------------------------- 31
3.4 Specific storage coefficient ---------------------------------------------------------------- 35
Chapter 4 Numerical Simulation ------------------------------------------------------------------ 38
4.1 Verification ----------------------------------------------------------------------------------- 38
4.2 Influence of stress-dependent models on the maintenance of overpressure --------- 39
4.3 Factor analyses of stress-dependent models on the maintenance of overpressure
--------------------------------------------------------------------------------- 40
Chapter 5 Conclusion and Suggestion ------------------------------------------------------------ 42
References ---------------------------------------------------------------------------------------------- 44
Appendix:
Appendix-1 Definition of hydraulic conductivity and intrinsic permeability ---------------- 49
Appendix-2 Illustration of the measurement system-YOKO2 --------------------------------- 50
Appendix-3 The equation for permeability derived by gas --------------------------------------- 52
Appendix-4 Sample preparation ---------------------------------------------------------------------- 54
Appendix-5 Governing equation transfers to code ------------------------------------------------- 56
Appendix-6 Curve fitting for all experiment results ----------------------------------------------- 59
Appendix-7 Relation of permeability/porosity and grain shape by Kozeny-Carman formula ------------------------------------------------------------ 70
Appendix-8 Other physical properties for tested samples ---------------------------------------- 71
參考文獻 Athy, L.F., 1930. Density, porosity, and compaction of sedimentary rocks. Am. Assoc. Pet. Geol. Bull. 14, 1-24.
Barker, C., 1972. Aquathermal pressuring: role of temperature in development of abnormal pressure zone. Am. Assoc. Pet. Geol. Bull. 56, 2068-2071.
Barker, C., and Horsfield, B. B., 1982. Mechanical versus thermal cause of abnormal high pore pressure zone. Am. Assoc. Pet. Geol. Bull. 66, 99-100.
Bethke, C.M., Corbet, T.F., 1988. Linear and nonlinear solutions for one-dimensional compaction flow in sedimentary basin. Water Resour. Res. 24(3), 461-467.
Brace, W.F., 1980. Permeability of crystalline and argillaceous rocks. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 17, 241-251.
Brace, W.F., Walsh, J.B., Frangos, W.T., 1968. Permeability of granite under high pressure. J. Geophys. Res. 73, 2225-2236.
Bradley, J. S., 1975. Abnormal formation pressure. Am. Assoc. Pet. Geol. Bull. 59(6), 957-973.
Bredehoeft, J.D., Hanshaw, B.B., 1968. On the maintenance of anomalous fluid pressures: I. thick sedimentary sequences, Geol. Soc. Am. Bull. 79, 1097-1106.
Brown, E.T., 1981. Rock Characterization testing and monitoring ISRM suggested methods, 83-89.
Bryant, W. R., Hottman, W., and Trabant, P., 1975. Permeability of unconsolidated marine sediments, Gulf of Mexico, Mar. Geotechnol. 1(1), 1-14.
Chapman, R. E.,1980. Mechanical versus thermal cause of abnormal high pore pressure in shales. Am. Assoc. Pet. Geol. Bull. 64, 2179-2183.
Chen, H. L., and Luo, X. R., 1988. The quantitative calculation of abnormal fluid pressure in argillaceous and arenaceous rocks and its geological application. Geology Review 34, 54-63.
Daines, S., 1982. Aquathermal pressuring and geopressure evaluation. Am. Assoc. Pet. Geol. Bull. 66, 931-939.
David, C., 1993. Geometry of flow path for fluid transport in rocks. J. Geophys. Res. 98, 12267-12278.
David, C., Wong, T.F., Zhu, W., Zhang, J., 1994. Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust. Pageoph 143, 425-456.
Debschutz, W., Kruckel, U., Schopper, J. R., 1989. Effect of geostatic stress and pore pressure on the Klinkenberg permeability factor and other fluid flow parameter. In: Maury, V. and Fourmaintraux, D. (Eds.). Proc. Symp. Rock at Great Depth, Vol. 1, A.A. Balkema, Rotterdam, 79-186.
Dickinson, G., 1953. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisana, Am. Assoc. Pet. Geol. Bull. 37(2), 410-432.
Evans, J.P., Forster, C.B., Goddard, J.V., 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault. J. Struct. Geol. 19(11), 1393-1404
Gibson, R. D., 1958. The progress of continuous in a clay layer increasing in thickness with time. Geotechnique, 8, 171-182.
Hoholick, J.D., Metarko, T., Potter, P.E., 1984. Regional variations of porosity and cement: St. Peter and Mount Simon Sandstones in Illinois Basin. Am. Assoc. Pet. Geol. Bull. 68(6), 753-764.
Hubbert, M. K., and Rubey, W. W., 1959. Role of fluid pressure in the mechanics of overthrust faulting, I. Mechanics of fluid-filled porous solids and its implications to overthrust faulting, Geol. Soc. Am Bull. 70, 115-166.
Hung, J.H., Wu, Y.H., Yeh, E.C., 2006. Physical properties, subsurface structure and fault zone characteristics in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. TAO, submitted.
Klinkenberg, L. J., 1941. The permeability of porous media to liquid and gases, American Petroleum Institute, drilling and production practices, 200-213
Lambe, T. W. and Whitman, R. V., 1969. Soil Mechanics, SI version.
Luo, X., Vasseur, G., 1992. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions. Am. Assoc. Pet. Geol. Bull. 76(10), 1550-1559.
MacGregor, J. R., 1965. Quantitative dertermination of reservoir pressure from conductivity log. Assoc. Pet. Geol. Bull. 49, 1502-1511.
Magara, K., 1975. Importance of aquathermal pressuring effect in Gulf Coast. Am. Assoc. Pet. Geol. Bull. 59, 2037-2045.
Morrow, C.A., Lockner, D., 1994. Permeability differences between surface-derived and deep drillhole core samples, Geophys. Res. Letts. 21, 2151-2154.
Morrow, C.A., Shi, L, Byerlee, J.D., 1984. Permeability of fault gouge under confining pressure and shear stress, J. Geophys. Res. 89, 3193-3200.
Rice, J.R., 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans, B., and Wong, T.F. (Eds.), Fault Mechanics and Transport Properties of Rocks, Academic Press, 475-503.
Rieke, H.H., III, Chilingarian, G.V., 1974. Compaction of argillaceous sediments. Elsevier, N.Y.
Riepe, L., Sachs, W. and Schopper, J.R., 1983. Pressure effects on permeability, In: 8th Eurp. Form. Eval. Symp. Trans., London, Paper B, 1-24.
Scheidegger, A.E.,1974. The physics of flow through porous media, 3rd Edition. University of Toronto Press, Toronto.
Schmoker, J.W., Halley, R.B., 1982. Carbonate porosity versus depth: A predictable relation for south Florida, Am. Assoc. Pet. Geol. Bull. 66, 2561-2570.
Sharp, J.M., Domenico, P.A., 1976. Energy transport in thick sequences of compaction sediment, Geol. Soc. Am. Bull. 87(3), 390-400.
Shi, T., Wang, C.Y., 1986. Pore pressure generation in sedimentary basins: overloading versus aquathermal. J. Geophys. Res. 91(B2), 2153-2162.
Shi, T., Wang, C.Y., 1988. Generation of high pore pressure in accretionary prisms: inferences from the Barbados Subduction Complex. J. Geophys. Res. 93(B8), 8893-8910.
Sibson, R.H., 1973. Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature 234, 66-68.
Singh, V.P., 1997. Kinematic wave modeling in water resources: Enviromental hydrology. Wiley, N.Y.
Sone, H., 2005. Porosity measurements at pressures with a simple pycnometer, presentation in Design Seminar in Kyoto University, February, 21-23.
Suppe, J., Wittke, J.H., 1977. Abnormal pore-fluid pressure in relation to stratigraphy and structure in the active fold-and-thrust belt of northwestern Taiwan, Petroleum Geology of Taiwan 14, 11-14.
Tanikawa, W., Shimamoto, T., 2006. Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrology and Earth System Sciences Discussions 3, 1315-1338.
Tanikawa, W., Shimamoto, T., Wey, W.K, Wu, W.Y., Lin, C.W., Lai, W.C., 2004. Sedimentation and generation of abnormal fluid pressure in the focal area of 1999 Taiwan Chi-Chi earthquake. In: Proc. of the ISRM Int. Symp. 3rd ARMS, 553-557.
Terzaghi, K. and Peck, R. B., 1948. Soil mechanics in engineering pratice. Wiley New York, N. Y., 566
Walder, J., Nur, A., 1984. Porosity reduction and crustal pore pressure development. J. Geophys. Res. 89(B13), 11539-11548.
Walsh, J. B., 1965. The effect of cracks on the compressibility of rocks. J. Geophys. Res.70, 381-389.
Wibberley, C., 2002. Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth Planets Space 54, 1153-1171.
Wibberley, C., Shimamoto, T., 2005. Earthquake slip weakening and asperities explained by thermal pressurization, Nature 436(7051), 689-692.
Wang, H. F. and Anderson M. P., 1995. Introduction to groundwater modeling, finite difference and finite element methods.
Yale, D.P., 1984. Network modeling of flow, storage and deformation in porous rocks, Ph.D. thesis, Stanford University, Calif.
Yeh, E.C., Sone, H., Nakaya, T., Ian, K.H., Song, S.R., Hung, J.H., Lin, W., Hirono, T., Wang, C.Y., Ma, K.F., Soh, W., Kinoshita, M., 2006. Preliminary results of core description from the Hole-A of the Taiwan Chelungpu Fault Drilling Project. TAO, submitted.
Zoback, M.D., Byerlee, J.D., 1975. Permeability and effective stress. Am. Assoc. Pet. Geol. Bull. 59,155-158.
指導教授 董家鈞(Jiajyun Dong) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明