博碩士論文 946205013 詳細資訊


姓名 蘇紹昆(Shao-kun Su)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 評估NOAH陸地過程模式在石門水庫集水區模擬之水文循環過程
(Evaluation simulated hydrological processes of NOAH land surface model applied to Shi-Men reservoir watershed)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於溫室效應與人類過度開發影響下,現今世界上許多地區正面臨水資源枯竭的問題。土壤濕度與地表溫度的模擬為研究並瞭解這樣的問題的重要關鍵。現階段,本研究欲從氣候尺度(即區域尺度與長期分析)的觀點進行討論,以台灣石門水庫集水區為例,利用NOAH LSM進行五年模擬,討論地表溫度與土壤濕度變化,瞭解氣候變遷對水資源影響。
輸入模式的大氣變數場資料分為兩部分:一為地面測站資料,主要為經濟部水利署測站之日累積降雨量;另為美國Goddard Space Flight Center(GSFC)Global Land Data Assimilation System(GLDAS)所測估之近地面降雨、輻射、大氣變數場(氣溫、比溼、壓力、風速)。本研究亦使用GSFC GLDAS提供的地表參數,包括土地利用(植被種類)、土壤種類、坡度種類、地表植被覆蓋率及反照率。
在固定所有條件(大氣變數、地表參數)下,分別利用經濟部水利署提供2001至2005年測站觀測之日累積雨量與GSFC GLDAS提供的三小時雨量資料,進行兩組數值模擬實驗。利用經濟部水利署之霞雲流量站資料評估後,結果顯示使用測站日累積雨量資料所模擬之逕流量明顯較好。
受限於許多因素,本研究只能初步分析與討論模式模擬的地表溫度,然而我們需要更瞭解地表參數(如土壤特性)對於模擬地表溫度的重要性,因為模式計算水文與能量平衡都會受到影響。未來,研究應考慮地表參數的空間分佈不均勻性,改進目前評估方法。另外,若能取得更多測站以及衛星資料或是地面同化資料(地表溫資料),我們將可以進行更完整評估與改進,將模式應用於區域氣候的模擬研究。
摘要(英) Because of global warming and human over-development, now the gradually exhausted water resource in many region of the world is a serious problem we need to face. The simulated soil moisture and land surface temperature (LST) have being key points for studying and understanding this kind of problem. The first step of such a research, the global scale analysis (much larger spatial and temporal scale) is chosen as our study’s viewpoint, and we choose NOAH Land Surface Model (LSM) developed by NCEP to carry out five-year offline simulations subject to observed near-surface atmospheric forcing at Shih-Men reservoir watershed. Finally, we’ll investigate how climate change affects our water resource through discussing the variation of modeled LST and soil moisture.
The atmosphere forcing data come from two sources: one is from local surface measurements like daily accumulative rainfall data measured by surface stations maintained by the Water Resources Agency; the other source is assimilated data produced by the GSFC GLDAS. Major variables in the GLDAS data set include near surface atmospheric parameters (air temperature, specific humidity, wind speed, and surface pressure), surface radiative fluxes (incident short-wave radiation, incident long-wave radiation) and surface rainfall rate. The GLDAS also provides land surface parameters. It includes land use type (vegetation type), soil type, land surface elevation, surface vegetation fraction, and albedo.
We perform two numerical experiences, E1 and E2, in the selected region of Shih-Men reservoir watershed. The two experiments are subject to the same forcing data (2001-2005) and land surface parameters, except surface rainfall. E1 is forced by GSFC GLDAS rainfall data, and E2 is forced by station rainfall data. Results show that the simulated runoff by E2 is better than that of E1.
At this stage, the evaluation of simulated LST in the current thesis is restricted by many factors, we can only investigate preliminary. We need to understand how important land surface parameters should be when simulate LST, however, since energy balance and water balance processes will be affected by land surface parameter in model calculation. For the next stage of the research, the spatial heterogeneous characteristic of land surface parameter should be considered to improve the evaluation approach. Besides, if more in situ and satellite observations data or high quality assimilation data are available, we can not only do more completed evaluation and refinement, but also apply it for regional climate modeling study.
關鍵字(中) ★ 全球陸地資料同化系統
★ 陸地過程模式
★ 蒸發散
★ 地表溫度
★ 土壤濕度
關鍵字(英) ★ land surface temperature
★ evapotranspiration
★ soil moisture
★ GLDAS
★ land surface model
論文目次 中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
專有名詞縮寫對照表 xii
第一章 緒論 1
第二章 模式介紹 3
2-1 模式起源 3
2-2 控制檔(Control file)設定與模式計算迴圈 4
2-3 模式的能量與質量平衡方程式 8
2-3-1 模式蒸發散方程式 9
2-3-2 模式潛勢能蒸發 11
2-4 模式的水循環計算過程 19
第三章 全球陸地資料同化系統 27
3-1 簡介 27
3-2 台灣地區之陸地同化資料概述 28
第四章 數值實驗及其結果討論 36
4-1 實驗場址 – 石門水庫 36
4-2 石門水庫之觀測資料與數值實驗設計 36
4-3 實驗結果討論 39
第五章 結論與建議 56
參考文獻 59
參考文獻 〔1〕王如意,易任,應用水文學,初版,國立編譯館,臺北,民國92年。
〔2〕杻家慶,「集水區地表水與地下水耦合數值模式」,國立中央大學,碩士論文,民國93年。
〔3〕知識通訊評論月刊第66期:越來越缺水的世界。2008年6月,取自http://k-review.com.tw/2008/04/01/657/。
〔4〕經濟部水利署,「MODIS衛星應用於水文觀測網建置先期研究計畫」,2007。
〔5〕經濟部水利署,水文水資源資料管理共應系統。2007年1月,取自http://gweb.wra.gov.tw/wrweb/。
〔6〕Chen F., K. Mitchell, J. Schaake, Y. Xue, H. L. Pan, V. Koren, Q. Y. Duan, M. Ek, A. Betts, “Modeling of land surface evaporation by four schemes and comparison with FIFE observations”, Journal of Geo-physical Research, Vol. 101, pp. 7251-7268, 1996.
〔7〕Chow, V. T., D. R. Maidment, L. W. Mays , Applied Hydrology, McGraw-Hill, New York, 1988.
〔8〕Clapp R. B., and G. M. Hornberger, “Empirical equations for some soil hydraulic properties”, Water Resources Research, Vol. 14, pp. 601-604, 1978.
〔9〕Hansen M. C., R. S. Defries, J. R. G. Townshend, R. Sohlberg, “Global land cover classification at 1 km spatial resolution using a classification tree approach”, International Journal of Remote Sensing, Vol. 21, Issue 6, pp. 1331-1364, 2000.
〔10〕Kohler M. A., and L. H. Parmele, “Generalized estimates of free-water evaporation”, Water Resources Research, Vol. 3, No. 4, pp. 997-1005, 1967.
〔11〕Kumar S. V., C. D. Peters-Lidard, Y. Tian, P. R. Houser, J. Geiger, S. Olden, L. Lighty, J. L. Eastman, B. Doty, P. Dirmeyer, J. Adams, K. Mitchell, E. F. Wood, J. Sheffield, “Land Information System - An Interoperable Framework for High Resolution Land Surface Modeling”, Environmental Modelling & Software, Vol. 21, pp. 1402-1415, 2006.
〔12〕Mahrt L., and H. L. Pan, “A two-layer model of soil hydrology”, Boundary Layer Meteorology, Vol. 29, pp. 1-20, 1984.
〔13〕Mahrt L., and Ek. Mitchell, “The influence of atmospheric stability on potential evaporation”, Journal of climate and applied meteorology, Vol. 23, pp. 222-234, 1984.
〔14〕Mitchell, K., and Coauthors, “GCIP Land Data Assimilation System(LDAS)project now underway”, GEWEX News, 9(4),3-6, 1999.
〔15〕Mitchell K.: The User’s Guide of Community NOAH Land-Surface Model(LSM)。2005年12月,取自http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm。
〔16〕NASA Goddard Space Flight Center – Land Information System: 2006年12月,取自http://lis.gsfc.nasa.gov/index.shtml。
〔17〕Pan H. L., and L. Mahrt, “Interaction between soil hydrology and boundary-layer development”, Boundary Layer Meteorology, Vol. 38, pp. 185-202, 1987.
〔18〕Peters-Lidard, C. D., M. S. Zion and E. F. Wood, “A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes”, Journal of Geo-physical Research, Vol. 102 (D4), pp.4303-4324, 1997.
〔19〕Reynolds C. A., T. J. Jackson, W. J. Rawls, “Estimating Soil Water-Holding Capacities by Linking the Food and Agriculture Organization Soil Map of the World With Global Pedon Databases and Continuous Pedotransfer Functions”, Water Resources Research, Vol. 36, No. 12, pp. 3653–3662, 2000.
〔20〕Rodell M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, “The global land data assimilation system”, American Meteorological Society, Vol. 85, Issue 3, pp. 381-394, 2004.
〔21〕Wan Z. M., and J. Dozier, “Land-surface temperature measurement from space: Physical principles and inverse modeling”, IEEE Transactions on Geo-science and Remote Sensing, Vol. 27, NO. 3, pp. 268-278, 1989.
〔22〕Wan Z. M., and J. Dozier, “A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from space”, IEEE Transactions on Geo-science and Remote Sensing, Vol. 34, NO. 4, pp. 892-905, 1996.
指導教授 隋中興(Chung-hsiung Sui) 審核日期 2008-7-7

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡