博碩士論文 946403004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:13.58.198.104
姓名 傅瑋宗(Wei-Tsung Fu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 實驗室模擬行星際磁場所控制 整體性的地球磁層結構
(Interplanetary Magnetic Field (IMF) Control over the Global Structures of Laboratory Magnetosphere)
相關論文
★ 動態視星等之星象辨識演算法★ 太空電漿探針系統
★ 太空離子探測系統★ 微衛星離子探測系統
★ 電子溫度儀在太空電漿模擬艙之量測★ 先進電離層探測儀之機構設計與分析
★ 先進電離層探測儀離子流向推導與校正★ 探空火箭姿態計
★ 先進電離層探測儀地面電子測試設備★ 熱真空測試系統
★ 太空電漿模擬艙自動化監控系統★ 數位式探空火箭姿態量測模組
★ 先進電離層探測儀整合測試系統★ 先進電離層探測儀數位控制單元之研製
★ 探空十號火箭的姿態重建與分析★ 先進電離層雙生儀地面電子測試設備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 藉由實驗室模擬太陽風與地球磁場所耦合的地球磁層結構,並以東西方向和南北方向觀測各種外加行星際磁場Interplanetary Magnetic Field (IMF) 控制下的磁層圖像。當外加南向和北向IMF時,都能觀察到極光,但是外加南向IMF時極光的亮度變得更強。此外,我們也探討了在日側和磁尾部分所產生的磁重聯現象。而當模擬地磁球以20度傾斜,我們除了影像結果也進行了電腦模擬,將其與實驗室模擬中的實驗結果的照片進行比較。應用(NASA’s Community Coordinated Modeling Center,簡稱 CCMC) CCMC上的兩種模擬整體性地球磁層的模式,我們得到電腦模擬與實驗室模擬相較之下,磁力線的曲率無論是模擬地磁球在未傾斜或傾斜,兩者定性上皆能相當匹配吻合。
摘要(英) Both east - west and north - south view images of magnetosphere for various interplanetary magnetic field (IMF) parameters have been investigated simultaneously in a laboratory experiment of the solar wind - magnetosphere coupling. An aurora is observed for both case of southward and northward IMF but the luminosity becomes stronger for southward IMF. Also, the reconnections are investigated in the front and tail areas. Inserting the 20 - degree terrella tilt, the study of modeling analysis is also processed for comparison with photograph of the experimental results in the laboratory simulation. Applied the models on CCMC overview of the global structure, the comparisons of model and laboratory simulation show the curvatures of the magnetic lines are qualitatively matched for the un-tilted and tilted terrella.
關鍵字(中) ★ 實驗室電漿
★ 地球磁層
★ 行星際磁場
★ 太陽風
關鍵字(英)
論文目次 中文提要 i
英文提要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
1介紹 1
1.1 太空電漿物理研究…………………………………………………………1
1.2太空電漿物理實驗………………………………………………………… 1
1.3 University of California, Riverside Terrella 1 (UCR-
T1) 實驗設備……… 2
2實驗模擬流程 5
2.1 標度律 (Scaling Laws) 的回顧……………………………………………5
2.2 實驗設備…………………………………………………………………11
3影像結果 19
3.1 地球磁層的整體性 (Global) 結構………………………………………19
3.2 東西向與南北向同時性影像比較………………………………………23
3.3地磁球傾斜20度的整體性 (Global) 結構………………………………27

4 實驗室影像結果討論 30
4.1場致電流 (FAC) 與極光位置……………………………………………30
4.2 赤道部分的明亮區………………………………………………………32
5 整體性的地球磁層電腦模擬 36
5.1 美國的太空天氣模式整合中心 (NASA’s Community
Coordinated Modeling Center) 之大型數值碼………………………36
5.2實驗結果與不同模式的電腦模擬比較……………………………………37
5.2.1 磁傾角0度時的東西向視角影像與模擬結果之比較……………38
5.2.2 磁傾角0度時的南北向視角影像與模擬結果之比較……………39
5.2.3 磁傾角20度時的東西向視角影像與模擬結果之比較…………46
5.2.4 外加北向IMF時的日側影像特性…………………………………46
6 結論與未來展望 50
6.1 論文總結………………………………………………………………………………………………………………50
6.2 Solar wind Magnetosphere Ionosphere Link Explorer
(SMILE) 計畫…………………………………………………………………………………………………51
參考文獻 53
參考文獻 Baum, P. J., and A. Bratenall, 1982: The laboratory magnetosphere, Geophys. Res. Lett., 9, 435-438, doi: 10.1029/GL009i004p00435.
Birkeland, K., 1908: The Norwegian Aurora Polaris Expedition 1902-1903, vol. 1, On the Cause of Magnetic Storms and the Origin of Terrestrial Magnetism, A. W. Broggers, Oslo.
Birn, J., G. Yur, H. U. Rahman, and S. Minami, 1992: On the termination of the closed field line region of the magnetotail. J. Geophys. Res., 97, 14833-14840, doi: 10.1029/92JA01145.
Birn, J., M. Hesse, 1996: Details of current disruption and diversion in simulations of
magnetotail dynamics, J. Geophys. Res., 101, 15,345-15,358, doi: 10.1029/96JA00887.
J. Bim, M. Hesse, and K. Schindler, 1997: Theory of magnetic reconnection in three dimensions, Adv. Space Res., 19, 1763-1771, doi: 10.1016/S0273-1177(97)00072-0.
Bogaerts, A., 2007: Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges, J. Anal. At. Spectrom., 22, 13–40, doi: 10.1039/b611436a.
Bostick, W. H., M. Brettschnelder, and H. Byfield, 1963: Plasma flow around a three-dimensional dipole, J. Geophys. Res., 68, 5315-5322, doi: 10.1029/JZ068i018p05315.
Brady, P., T. Ditmire, W. Horton, M. L. Mays, and Y. Zakharov, 2009: Laboratory experiments simulating solar wind driven magnetospheres. Phys. Plasmas, 16, 043112-043118, doi: 10.1063/1.3085786.
Chandler, M. O., S. A. Fuselier, M. Lockwood, and T. E. Moore, 1999: Evidence of component merging equatorward of the cusp, J. Geophys. Res., 104, 22,623–22,634, doi: 10.1029/1999JA900175.
Cladis, J. B., T. D. Miller, and J. R. Baskeft, 1964: Interaction of supersonic plasma stream with a dipole magnetic field, J. Geophys. Res., 69, 2257-2272, doi: 10.1029/JZ069i011p02257
Connor, H. K., E. Zesta, D. M. Ober, and J. Raeder, 2014: The relation between transpolar potential and reconnection rates during sudden enhancement of solar wind dynamic pressure: OpenGGCM-CTIM results, J. Geophys. Res., 119, 3411-3429, doi: 10.1002/2013JA019728.
Craven, J. D. ,J. S. Murphree , L. A. Frank, and L. L. Cogger,1991: Simultaneous optical observations of transpolar arcs in the two polar caps, Geophys. Res. Lett., 18, 2297-2300, doi:10.1029/91GL02308.
Fu, W. T., G. Yur, C. K. Chao, and H. U. Rahman, 2019: Interplanetary Magnetic Field (IMF) Control over the Global Structures of Laboratory Magnetosphere, Terr. Atmos. Ocean. Sci. (accepted)
Fuselier, S. A., S. M. Petrinec, and K. J. Trattner, 2000: Stability of the high-latitude reconnection site for steady northward IMF, Geophys. Res. Lett., 27, 473–476, doi: 10.1029/1999GL003706.
Fuselier, S. A., S. M. Petrinec, K. J. Trattner, and B. Lavraud, 2014: Magnetic field topology for northward IMF reconnection: Ion observations, J. Geophys. Res. Space Physics, 119, 9051–9071, doi: 10.1002/2014JA020351.
Gordeev, E., V. Sergeev, I. Honkonen, M. Kuznetsova, L. Rastätter, M. Palmroth, P. Janhunen, G. Tóth, J. Lyon, and M. Wiltberger, 2015: Assessing the performance of community-available global MHD models using key system parameters and empirical relationships, Space Weather, 13, 868–884, doi: 10.1002/2015SW001307.
Horton, W. and C. Chiu, 2004: Laser Z-pinch dipole-target experiments to simulate space physics acceleration processes. Phys. Plasmas, 11, 1645-1654, doi: 10.1063/1.1666509.
Horton, W., C. Chiu, T. Ditmire, P. Valanju, R. Presura, V. V. Ivanov, Y. Sentoku, V. I. Sotnikov, A. Esaulov, N. L. Galloudec, T. E. Cowan, and I. Doxas, 2007: Labo-ratory simulation of magnetospheric plasma shocks. Adv. Space Res., 39, 358-369, doi:10.1016/j.asr.2005.01.087.
Janhunen, P., M. Palmroth, T. Laitinen, I. Honkonen, L. Juusola, G. Facsko, T. I. Pulkkinen, 2012: The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation, J. Atmos. Sol.-Terr. Phys. 80, 48-59, doi: 10.1016/j.jastp.2012.03.006.
Karl, S., D. Fletcher, G. Dégrez, T. Magin and M. Playez, 2002: Assessment of Radiative Transport in an Argon Plasma Flow, European Space Agency, ESA SP-487, p.505, ISBN: 92-9092-789-5.
Kawashima, N., and N. Fukushima, 1964: Model cxperiment for the interaction of solar plasma stream and geomagnetic field, Planet. Space Sci., 12, 1187-1190, doi: 10.1016/0032-0633(64)90165-5.
Kawashima, N., and S. Mori, 1965: Experiment on the intrusion of plasma into a simulated magnetic cavity, Phys. Fluids, 8, 378-383, doi:10.1063/1.1761232.
Li, W. H., J. Raeder, M. F. Thomsen, B. Lavraud, L. Z. Lu, and E. W. Liang, 2017: The formation of superdense plasma sheet in association with the IMF turning from northward to southward, J. Geophys. Res., 122, 88-93, doi: 10.1002/2016JA023373.
Lyon, J. G., J. A. Fedder, and C. M. Mobarry, 2004: The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol.-Terr. Phys. 66, 1333–1350, doi: 10.1016/j.jastp.2004.03.020.
Mauel, M. E., Warren, H. H., Hasegawa, A., 1992: An experiment to measure collisionless radial transport of energetic electrons confined by a dipole magnetic field, IEEE Transactions on Plasma Science ,20, 626-630, doi: 10.1109/27.199503.
Minami, S. and Y. Takeya, 1985: Flow of artificial plasma in a simulated magnetosphere: Evidence of direct interplanetary magnetic field control of the magnetosphere, J. Geophys. Res., 90, 9503–9518, doi: 10.1029/JA090iA10p09503.
Minami, S., I. M. Podgorny, and A. I. Podgorny, 1993: Laboratory evidence of Earthward electric field in the magnetotail current Sheet, Geophys. Res. Lett., 20(1), 9-12, doi: 10.1029/92GL02492.
Oka, M.; Birn, J.; Battaglia, M.; Chaston, C. C.; Hatch, S. M.; Livadiotis, G.; Imada, S.; Miyoshi, Y.; Kuhar, M.; Effenberger, F.; Eriksson, E.; Khotyaintsev, and Y. V.; Retinò, A, 2004:
Electron Power-Law Spectra in Solar and Space Plasmas, Space Sci Res, V214(5), 82-148, doi: 10.1007/s11214-018-0515-4.
Podgorny, I. M. and R. Z. Sagdeev, 1970: Physics of intro¬ducing plasma and laboratory experiments. Sov. Phys. Uspekhi, 98, 445-462, doi: 10.1070/PU1970v012n04ABEH003754.
Podgorny, I. M., 1976: Laboratory experiments (plasma intrusion into the magnetic field). In: Williams, D. J. (Ed.), Physics of Solar Planetary Environments, pp241, American Geophysical Union.
Podgorny, I. M., E. M. Dubinin, and Y. N. Potanin, 1978: The magnetic field on the magnetospheric boundary from laboratory simulation data. Geophys. Res. Lett., 5, 207-210, doi: 10.1029/GL005i003p00207.
Podgorny, I. M., A. I. Podgorny, S. Minami, and R. Rana, 2003: The mechanism of energy release and field-aligned current during the substorms and solar flares, Adv. Polar Upper Atmos. Res., 17, 77–83.
Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, D. L. De Zeeuw, 1999: A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys. 154, 284–309, doi: 10.1006/jcph.1999.6299.
Proxauf, B., Öttl, S., and S. Kimeswenger, 2013: Upgrading electron temperature and electron density diagnostic diagrams of forbidden line emission, Astronomy and Astrophysics, 561, A10, 4pp, doi: 10.1051/0004-6361/201322581.
Raeder, J., R.L. McPherron, L. A. Frank, S. Kokubun, G. Lu, T. Mukai, W. R. Paterson, J. B. Sigwarth, H. J. Singer, J. A. Slavin, 2001: Global simulation of the Geospace Environment Modeling substorm challenge event. J. Geophys. Res., Space Phys. 106, 381–395. doi: 10.1029/2000ja000605.
Raeder, J., 2006: Flux Transfer Events: 1.eneration mechanism for strong southward IMF, Ann. Geoph., 24, 381-392, doi: 10.5194/angeo-24-381-2006.
Rahman, H. U., G. Yur, R. S. White, J. Birn, and F. J. Wessel, 1991: On the influence of the magnetization of a model solar wind on a laboratory magnetosphere. J. Geophys. Res., 96, 7823-7829, doi: 10.1029/90JA01993.
Rahman, H. U., G. Yur, R. S. White, F. J. Wessel, J. J. Song, and N. Rostoker, 1991: Propagation of plasma beams across the magnetic field. Proc. SPIE, 1407, doi: 10.1117/12.43532.
Rana, R.,S. Minami,S. Takechi,A. I. Podgorny, andI. M. Podgorny, 2004: The dynamical behavior of the earth’s magnetosphere based on laboratory simulation, Earth, Planets and Space, 56, 1005-1010, doi: 10.1186/BF03351798.
Saitoh, H., Y. Yano,Z. Yoshida,M. Nishiura,J. Morikawa, Y. Kawazuna, T. Nogami, and M. Yamasaki, 2015: Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry, Phys. Plasmas, 22, 024503-024511, doi: 10.1063/1.4908550.
Shaikhislamov, I. F., Zakharov, Y. P., Posukh, V. G., Boyarintsev, E. L., Melekhov, A. V., Antonov, V. M., and Ponomarenko, A. G., 2011: Laboratory experiment on region-1 field-aligned current and its origin in the low-latitude boundary layer, Plasma Phys. Control. Fusion, 53, 035017-035031, doi: 10.1088/0741-3335/53/3/035017.
Shaikhislamov, I. F., Zakharov, Y. P., Posukh, V. G., Boyarintsev, E. L., Melekhov, A. V., Antonov, V. M., and Ponomarenko, A. G., 2014: Laboratory model of magnetosphere created by strong plasma perturbation with frozen-in magnetic field, Plasma Phys. Control. Fusion, 56, 125007-125026, doi: 10.1088/0741-3335/56/12/125007.
Song, J. J., F. J. Wessel, G. Yur, H. U. Rahman, N. Rostoker, and R. S. White, 1990: Fast magnetization of a high-to-low beta plasma beam. Phys. Fluids, 2, 2482-2486, doi: 10.1063/1.859512.
Wang, Y., J. Raeder, and C. T. Russell, 2004: Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt, Ann. Geophys., 22, 4273-4290, doi: 10.5194/angeo-22-4273-2004.
Wessel, F. J., J. H. Song, N. Rostoker, G. Yur, and H. U. Rahman, 1990: Fast magnetization of a low to high beta plasma beam, Proceedings SPIE-The International Society for Optical Engineering, 1226, 457pp, doi: 10.1109/PLASMA.1990.110713.
Yur. G., 1990: Laboratory simulation of the magnetosphere, magnetotail reconnection and the study of field-aligned currents, Ph.D. Thesis California Univ., Riverside.
Yur, G., H. U. Rahman, J. Birn, F. J. Wessel, and S. Minami, 1995: Laboratory facility for magnetospheric simulation. J. Geophys. Res., 100, 23727-23736, doi: 10.1029/95JA01162.
Yur, G., T. F. Chang, H. U. Rahman, J. Birn, and C. K. Chao, 1999: Magnetotail structures in a laboratory magnetosphere. J. Geophys. Res., 104, 14517-14528, doi: 10.1029/98JA02193.
Yur, G., C. C. Cheng, C. K. Chao, J. K. Chao, and H. U. Rahman, 2012: Simulation in the Front Region of the Earth’s Magnetosphere, Terr. Atmos. Ocean. Sci., 23, No.1, 85-94, doi:10.3319/TAO.2011.06.20.02.
Xiao Qingmei, Zhibin Wang , Xiaogang Wang, Chijie Xiao, Xiaoyi Yan, and Jinxing Zheng , 2017: Conceptual design of Dipole Research Experiment (DREX), Plasma Sci. Technol., 19(3), 035301-035307, doi: 10.1088/2058-6272/19/3/035301.
指導教授 趙吉光 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明