博碩士論文 946403006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.233.239.102
姓名 饒駿頌(Cung-Sung Jao)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 對電漿系統中帶電粒子束與救火管不穩定性之研究
(Streaming and fire hose instabilities in pair plasmas)
相關論文
★ 磁流體波於電流片中傳播之研究★ 壓力非均向電漿中霍爾電流對震波形成之效應
★ 撕裂模不穩定性於壓力均向與非均向電漿中之磁流體理論★ 地球磁層頂二維結構之研究
★ 地球磁尾慢速震波之研究★ 慢速震波在壓力非均向電漿中之研究
★ 應用Kappa速度分佈函數所建立之廣義Harris磁場模式★ 靜電場中帶電粒子束不穩定性
★ 救火管不穩定性之磁流體力學理論★ 離子慣性效應對救火管與磁鏡不穩定性之影響
★ 地球磁鞘電漿之熱力狀態★ 微粒電漿中之磁流體波
★ 地球磁層頂二維結構之重建與分析★ 救火管不穩定性之混合粒子碼模擬研究
★ 相對論電漿中之磁流體波與震波★ 沿磁力線救火管不穩定之磁流體數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電漿為物質的第四態。太空環境中的電漿主要由電子與離子所組成,然在高能的環境中,如地球的輻射帶及某些天文系統中,會出現正電子與電子所組成的正負電子電漿,也稱作「對電漿」。相對於電子離子電漿系統,許多現象與機制在「對電漿」系統中仍屬於待研究之問題,而本論文將研究「對電漿」中之帶電粒子束不穩定性與救火管不穩定性。除了建立帶電粒子束靜電場不穩定性的線性流體理論外,本論文首次利用一維靜電場全粒子模式驗證,由正電子與電子共組粒子束進入由正電子與電子共組背景電漿之四元素系統,可形成週期性孤立波結構與交織之正電子洞與電子洞之結構。本論文同時也將粒子模擬過程中的熱力狀態與流體理論相互驗證,並用以解釋不穩定性系統停止生長之機制。另外,二維粒子模擬的研究顯示,一維模擬系統中可以穩定存在的週期性孤立波結構,在二維系統中會因為熱耗散或是垂直磁場傳播之靜電波生成而瓦解。
本論文也將探討帶電粒子束電磁場不穩定性與救火管不穩定性的磁場成長機制。首先,利用壓力非均向之雙流體線性理論,得出「對電漿」系統中救火管不穩定性的發生條件與成長速率。一維電磁場全粒子模擬的研究顯示,線性理論中所預測之較大成長速率之短波,在模擬實驗中因為波與粒子迴旋頻率產生之共振效應會自動被抑制。而因帶電粒子束電磁場不穩定性導致磁場成長的效應,則是因為帶電粒子束平行磁場傳播之電磁波與背景電漿中平行磁場傳播之電磁波共振所造成的。電磁場粒子模擬的初始階段亦可觀察到靜電場不穩定性的發生時間比電磁場不穩定性來得早,而雖然靜電場不穩定性的發生會造成系統中的壓力非均向性,但其磁場引發機制與救火管不穩定性並不全然相同,模擬顯示,電磁場帶電粒子束不穩定性的穩定條件趨近於 Beta_pal - Beta_per < 0。
摘要(英) Plasma is the fourth state of matter. While electron-proton plasmas may exist in most space plasma environments, electron-positron or pair plasmas may be present in the high energy environments such as the Earth’s radiation belt and many astrophysical systems. This thesis studies the streaming and fire-hose instabilities which have not well been explored in pair plasma system. We first examine the electrostatic streaming instability based on the linear fluid theory and address the formation of solitons and hole structures in electron-positron plasmas by using one-dimensional electrostatic particle-in-cell model which demonstrates for the first time the periodic interlacing electron-positron hole structures. The hole structures are generated by current-free electron and positron beams streaming in a stationary electron-positron background plasma. Detailed comparisons between simulation results and linear theory of streaming instability in pair plasmas are made and the thermodynamic state is inferred. In the two-dimensional simulations, the hole structure may decay because of the heat dissipation or the development of electrostatic waves perpendicular to the background magnetic field.
This thesis also studies the growth of magnetic field by the electromagnetic streaming and the fire-hose instabilities. The fire-hose instability condition and the growth rate are examined based on the linear anisotropic hydromagnetic theory. It is found that though the waves with shorter wavelengths have larger growth rate based on the linear theory, their growth is restrained due to the gyro-resonance of particles in the nonlinear evolution processes. In the nonlinear evolution processes of electromagnetic streaming instability, the electrostatic instability takes place before the electromagnetic instability making the system anisotropic and triggering the magnetic field growth. The nonlinear simulation results show that the electromagnetic streaming instability saturates at Beta_pal - Beta_per < 0 .
關鍵字(中) ★ 電漿
★ 正子
★ 對電漿
★ 不穩定性
★ 數值模擬
★ 帶電粒子束不穩定性
★ 救火管不穩定性
關鍵字(英) ★ plasma
★ pair plasma
★ electron-positron plasma
★ positron
★ instability
★ simulation
★ streaming instability
★ fire hose instability
★ particle simulation
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 vii
表目錄 xi
一、 緒論 1
二、 帶電粒子束不穩定性與靜電場孤立波之形成 15
2-1 帶電粒子束靜電場不穩定性之線性理論 15
2-2 一維孤立波之形成 24
2-3 二維孤立波之形成 30
三、 救火管不穩定性與帶電粒子束不穩定性之磁場成長機制 61
3-1 壓力非均向性系統之線性理論 61
3-2 救火管不穩定性之磁場成長機制 72
3-3 帶電粒子束電磁場不穩定性之線性理論 77
3-4 帶電粒子束電磁場不穩定性之磁場成長機制 81
四、 結論 111
參考文獻 115
參考文獻 Adriani, O. et al. (2009), An anomalous positron abundance in cosmic rays with energies 1.5-100GeV, Nature, 458, 607-609.
Adriani, O. et al. (2010), A statistical procedure for the identification of positrons in the PAMELA experiment, Astroparticle Physics, 34, 1-11.
Asseo, E. (2003), Pair plasma in pulsar magnetospheres, Plasma Physics and Controlled Fusion, 45, 853-867.
Bale, S. D. et al. (1998), Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes, Geophysical Research Letters, 25, 2929-2932.
Baur, G. et al. (1996), Production of antihydrogen, Physics Letters B, 368, 251-258.
Begelman, M. C. et al. (1984), Theory of extragalactic radio sources, Reviews of Modern Physics, 56, 255-351.
Berk, H. L. and K. V. Roberts (1967), Nonlinear Study of Vlasov’s Equation for a Special Class of Distribution Functions, Physics of Fluids, 10,1595-1597.
Bessho, N. and A. Bhattacharjee (2012), Fast Magnetic Reconnection and Particle Acceleration in Relativistic Low-density Electron-Positron Plasmas without Guide Field, The Astrophysical Journal, 750, article id. 129, 14.
Bostrom, R. et al. (1988), Characteristics of solitary waves and weak double layers in the magnetospheric plasma, Physical Review Letters, 61, 82-85.
Bounds, S. R. et al. (1999), Solitary potential structures associated with ion and electron beams near 1RE altitude, Journal of Geophysical Research, 104, 28709-28718.
Califano, F. et al. (2007), Electrostatic coherent structures: The role of the ions dynamics, Physics of Plasmas, 14, 052306-052306-7.
Cattell, C. et al. (2002), Polar observations of solitary waves at the Earth’s magnetopause, Geophysical Research Letters, 29, 9-1, DOI 10.1029/2001GL014046.
Cattell, C. et al. (2005), Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations, Journal of Geophysical Research, 110, A01211, doi:10.1029/2004JA010519.
Chew, G. F. et al., The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions, Proc. R. Soc. London, Ser A, 236, 112, 1956.
Chuang, S.-H. and L.-N. Hau (2009), The characteristics of ion acoustic solitons in non-Maxwellian plasmas, Physics of Plasmas, 16, 022901-022901-6.
Chuang, S.-H. and L.-N. Hau (2011), General formulation for acoustic solitons in three-component nonthermal plasmas, Physics of Plasmas, 18, 063702-063702-12.
Coroniti, F. V. et al. (1990), Magnetically striped relativistic magnetohydrodynamic winds - The Crab Nebula revisited, Astrophysical Journal, 349, 538-545.
Dieckmann, M. E. et al. (2009), Simulation study of the filamentation of counter-streaming beams of the electrons and positrons in plasmas, Plasma Physics and Controlled Fusion, 51, 065015.
Drake, J. F. et al. (2003), Formation of Electron Holes and Particle Energization During Magnetic Reconnection, Science, 299, 873-877.
Dubinov, A. E. et al. (2006), Solitary electrostatic waves are possible in unmagnetized symmetric pair plasmas, Physics of Plasmas, 13, 082111-082111-6.
Eliasson, B. and P. K. Shukla (2005), Solitary phase-space holes in pair plasmas, Physical Review E, 71, 046402.
Eliasson, B. and P. K. Shukla (2006), Formation and dynamics of coherent structures involving phase-space vortices in plasmas, Physics Reports, 422, 225-290.
Ergun, R. E. et al. (1998), Debye-Scale Plasma Structures Associated with Magnetic-Field-Aligned Electric Fields, Physical Review Letters, 81, 826-829.
Fonseca, R. A. et al. (2003), Three-dimensional Weibel instability in astrophysical scenarios, Physics of Plasmas, 10, 1979-1984.
Franz, J. R. et al. (1998), POLAR observations of coherent electric field structures, Geophysical Research Letters, 25, 1277-1280.
Greaves, R. G. and C. M. Surko (1995), An electron-positron beam-plasma experiment, Physical Review Letters, 75, 3846-3849.
Haruki, T. and J. I. Sakai (2003), Generation of magnetic field and electrostatic shock wave driven by counterstreaming pair plasmas, Plasmas Physics: 11th International Congress on Plasma Physics: ICPP2002. AIP Conference Proceedings, 669, 762-765.
Hasegawa, A. (1975), Plasma Instabilities and Nonlinear Effects, 94, Springer-Verlag, New York.
Hau, L.-N. and U. O. Sonnerup (1993), On slow-mode waves in an anisotropic plasma, Geophysical Research Letters, 20, 1763-1766.
Hau, L.-N. et al. (1993), Double-polytropic closure in the magentosheath, Geophysical Research Letters, 20, 2255-2258.
Hau, L.-N. (2002), A note on the energy laws in gyrotropic plasmas, Physics of Plasmas, 9, 2455-2457.
Hellinger, P. and A. Mangeney (1999), Electromagnetic ion beam instabilities: Oblique pulsations, Journal of Geophysical Research, 104, 4669-4680.
Hellinger, P. et al. (2006), Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations, Geophysical Research Letters, 33, L09101, doi:10.1029/2006GL025925.
Hobara, Y. et al. (2008), Cluster observations of electrostatic solitary waves near the Earth’s bow shock, Journal of Geophysical Research, 113, CiteID A05211.
Iwamoto, N. (1993), Collective modes in nonrelativistic electron-positron plasmas, Physical Review E, 47, 604-611.
Kasper, J. C. et al. (2002), Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy, Geophysical Research Letters, 29, 1839, doi:10.1029/2002GL015128.
Kaufmann, R. L. et al. (2002), Three-dimensional analyses of electric currents and pressure anisotropies in the plasma sheet, Journal of Geophysical Research, 107, 10.1029/2001JA000288.
Lazar, M. et al. (2009), A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Nonrelativistic theory, Journal of Plasma Physics, 75, 19-33.
Leventhal, M. et al. (1978), Detection of 511 keV positron annihilation radiation from the galactic center direction, Astrophysical Journal, 225, L11-L14.
Lu, G. M. et al. (2010), Exact electrostatic waves in electron–positron plasmas, Physica Scripta, 81, 045503, 5.
Lu, Q. M. et al. (2005), Generation mechanism of electrostatic solitary structures in the Earth’s auroral region, Journal of Geophysical Research, 110, A03223, doi:10.1029/2004JA010739.
Lu, Q. M. et al. (2008), Perpendicular electric field in two-dimensional electron phase-holes: A parameter study, Journal of Geophysical Research, 113, A11219, doi:10.1029/2008JA013693.
Luque, A. and H. Schamela (2005), Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems, Physics Reports, 415, 261-359.
Luque, A. et al. (2005), Nonlinear instability and saturation of linearly stable current-carrying pair plasmas, Physics of Plasmas, 12, 122307-122307-6.
Marcowith, A. et al. (1998), Non-thermal pair model for the radio-galaxy Centaurus A, Astronomy and Astrophysics, 331, L57-L60.
Matsumoto, H. et al. (1994), Electrotastic Solitary Waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL, Geophysical Research Letters, 21, 2915-2918.
Matsumoto, H. et al. (2003), Observation of Electrostatic Solitary Waves associated with reconnection on the dayside magnetopause boundary, Geophysical Research Letters, 30, 59-1, CiteID 1326, DOI 10.1029/2002GL016319.
Matsumoto, H. et al. (2005), Generation mechanism of electrostatic waves in the upstream and shock transition regions of quasi-parallel shocks, Journal of Geophysical Research, 110, A01104.
Matteini, L. et al. (2007), Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU, Geophysical Research Letters, 34, L20105, doi:10.1029/2007GL030920.
Miyake, T. et al. (2000), Electrostatic particle simulations of solitary waves in the auroral region, Journal of Geophysical Research, 105, 23239-23250.
Morse, R. L. and C. W. Nielson (1969), One-, Two-, and Three-Dimensional Numerical Simulation of Two-Beam Plasmas, Physical Review Letters, 23, 1087-1090.
Omura, Y. et al. (1994), Computer simulation of electrostatic solitary waves: A nonlinear model of broadband electrostatic noise, Geophysical Research Letters, 21, 2923-2926.
Omura, Y. et al. (1996), Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail, Journal of Geophysical Research, 101, 2685-2698.
Oppenheim, M. M. et al. (1999), Evolution of Electron Phase-Space Holes in a 2D Magnetized Plasma, Physical Review Letters, 83, 2344-2347.
Oppenheim, M. M. et al. (2001), Evolution of electron phase-space holes in 3D, Geophysical Research Letters, 28, 1891-1894.
Oohara, W. and R. Hatakeyama (2003), Pair-Ion Plasma Generation using Fullerenes, Physical Review Letters, 91, 205005.
Oohara, W. et al.(2005), Electrostatic Waves in a Paired Fullerene-Ion Plasma, Physical Review Letters, 95, 175003.
Oohara, W. et al. (2007), Collective mode properties in a paired fullerene-ion plasma, Physical Review E, 75, 056403.
Oohara, W. and O. Fukumasa (2010), Hydrogen atomic pair-ion production on catalyst surface, Review of Scientific Instruments, 81, 023507-023507-6.
Pelletier, G. and H. Sol (1992), Energetic particle beams in quasars and active galactic nuclei, Monthly Notices of the Royal Astronomical Society, 254, 635-646.
Pillay, R. and R. Bharuthram (1992), Large amplitude solitons in a multi-species electron-positron plasma, Astrophysics and Space Science, 198, 85-93.
Rowlands, G. et al. (2007), The plasma filamentation instability in one dimension: nonlinear, New Journal of Physics, 9, 247.
Saito, S. and J. I. Sakai (2004), The Emission of Electromagnetic Waves during the Coalescence of Two Parallel Current Loops in Solar Flares, The Astrophysical Journal, 616, L179-L182.
Schamel, H. and A. Luque (2005), Kinetic theory of periodic hole and double layer equilibria in pair plasmas, New Journal of Physics, 7, 69.
Schamel, H. (2012), Cnoidal electron hole propagation: Trapping, the forgotten nonlinearity in plasma and fluid dynamics, Physics of Plasmas, 19, 020501-020501-17.
Schlickeiser, R. (2003), Nonthermal radiation from jets of active galactic nuclei: Electrostatic bremsstrahlung as alternative to synchrotron radiation, Astronomy and Astrophysics, 410, 397-414.
Shin, K. et al. (2008), Characteristics of electrostatic solitary waves in the Earth’s foreshock region: Geotail observations, Journal of Geophysical Research, 113, CiteID A03101.
Silin, I. et al. (2007), Instabilities and solitary structures in plasmas with ion beams: Linear theory and Vlasov simulations, Physics of Plasmas, 14, 012109-012109-10.
Stockem, A. et al. (2008), Suppression of the filamentation instability by a flow-aligned magnetic field: testing the analytic threshold with PIC simulations, Plasma Physics and Controlled Fusion, 50, 025002, 18.
Stockem, A. et al. (2010), PIC simulations of the temperature anisotropy-driven Weibel instability: analysing the perpendicular mode, Plasma Physics and Controlled Fusion, 52, 085009.
Surko, C. M. et al. (1989), Positron plasma in the laboratory, Physical Review Letters, 62, 901-904.
Surko, C. M. and R. G. Greaves (2004), Emerging science and technology of antimatter plasmas and trap-based beams, Physics of Plasmas, 11, 2333-2348.
Swisdak, M. et al. (2008), Development of a Turbulent Outflow During Electron-Positron Magnetic Reconnection, The Astrophysical Journal, 680, 999-1008.
Tautz R. C. and R. Schlickeiser (2005), Counterstreaming magnetized plasmas. I. Parallel wave propagation, Physics of Plasmas, 12, 122901-122901-7.
Tautz R. C. and R. Schlickeiser (2006), Counterstreaming magnetized plasmas. II. Perpendicular wave propagation, Physics of Plasmas, 13, 062901-062901-9.
Tautz R. C. and J.-I. Sakai (2007), Magnetic field amplification in anisotropic counterstreaming pair plasmas, Physics of Plasmas, 14, 012104-012104-6.
Tautz R. C. (2011), Instability conditions and maximum growth rate of aperiodic instabilities, Physics of Plasmas, 18, 012101-012101-7.
Temerin, M. et al. (1982), Observations of double layers and solitary waves in the auroral plasma, Physical Review Letters, 48, 1175-1179.
Timofeev I. V. (2012), Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas, Physics of Plasmas, 19, 042108-042108-9.
Umeda, T. et al. (2004), Two-dimensional particle simulation of electromagnetic field signature associated with electrostatic solitary waves, Journal of Geophysical Research, 109, A02207.
Umeda, T. et al. (2006), Nonlinear evolution of the electron two-stream instability: Two-dimensional particle simulations, Journal of Geophysical Research, 111, A10206, doi:10.1029/2006JA011762.
Umeda, T. et al. (2012), Vlasov simulation of electrostatic solitary structures in multi-component plasmas, Journal of Geophysical Research, 117, A05223, doi:10.1029/2011JA017181.
Usov, V. V. (1987), On two-stream instability in pulsar magnetospheres, Astrophysical Journal, 320, 333-335.
Verdon M. W. and D. B. Melrose (2008), Wave dispersion in a counterstreaming, cold, magnetized, electron-positron plasma, Physical Review E, 77, id. 046403.
Verheest, F. et al. (1996), Electrostatic Solitons in Multispecies Electron-Positron Plasmas, Astrophysics and Space Science, 239, 125-139.
Verheest, F. (2005), On the nonexistence of large amplitude stationary solitary waves in symmetric unmagnetized pair plasmas, Nonlinear Processes in Geophysics, 12, 569-574.
Verheest, F. (2006), Existence of bulk acoustic modes in pair plasmas, Physics of Plasmas, 13, 082301-082301-8.
Wang B.-J. and L.-N. Hau (2013), MHD aspects of fire-hose type instabilities, Journal of Geophysical Research, 108, 1463, doi:10.1029/2003JA009986.
Wardle, J. F. C. et al. (1998), Electron-positron jets associated with the quasar 3C279, Nature, 395, 457-461.
Weidenspointner, G. et al. (2008), An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays, Nature, 451, 159-162.
Williams, J. D. et al. (2006), Electrostatic solitary structures observed at Saturn, Geophysical Research Letters, 33, CiteID L06103.
Winske, D. and K. B. Quest (1986), Electromagnetic ion beam instabilities - Comparison of oneand two-dimensional simulations, Journal of Geophysical Research, 91, 789-8797.
Wu, M.Y. et al. (2011), The evolution of the magnetic structures in electron phasespace holes: Two‐dimensional particle‐in‐cell simulations, Journal of Geophysical Research, 116, A10208.
Wu, M. Y. et al. (2012), The magnetic structures of electron phase-space holes formed in the electron two-stream instability, Astrophysics and Space Science, 338, 81-85.
Xu, D. and T. Chen (2012), Constraints on electron temperature anisotropies in sheath regions of interplanetary shocks, Planetary and Space Science, 62, 100-103.
Zank, G. P. and R. G. Greaves (1995), Linear and nonlinear modes in nonrelativistic electron-positron plasmas, Physical Review E, 51, 6079-6090.
Zhao, J. et al. (1994), Study of nonlinear Alfvén waves in an electron-positron plasma with a three-dimensional electromagnetic particle code, Physics of Plasmas, 1, 103-108.
指導教授 郝玲妮 審核日期 2013-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明