博碩士論文 952202020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.206.187.81
姓名 張鉑瑋(Bo-Wei Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
(Adsorption and diffusion of Au1~2 atoms on θ-Al2O3(001) surface : a first principle study)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究
★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們使用第一原理方法計算一到二顆金原子在θ型氧化鋁(001)表面上的吸附與漂移行為。首先推測了塊材氧化鋁的一截面作為吸附表面後,在所有可能吸附位置上放置第一顆金原子並投入計算,觀察結果單一顆金原子的吸附能皆低於室溫穩定吸附標準,且在表面移動所需克服的位障亦小,使得它降落表面後能迅速朝各方向漂移,且短時間內沒遇到更好的吸附狀況,則會於表面脫附。接著放置第二顆金原子在已吸附的第一顆金原子的周圍,以及直接將兩顆金原子放置在表面的對稱處用來當作金分子的漂移中間態,計算觀察結果為金分子對表面的吸附能好於單一金原子,且喜歡以立起來的方式與表面上的一顆氧鍵結,而在表面的漂移方式則喜以立起來後直接平移移動,以立起來、躺下、立起來這種滾動方式漂移的機會較少。
摘要(英) We have studied the adsorption and diffusion of Au1~2 atoms on θ-Al2O3(001) surface with density-functional-theory calculations. The results show that the adsorption energy (0.17-0.35 eV) and the diffusion barrier (smaller than 0.1 eV) of a single Au atom on the oxide are small. The adsorbed Au atom is expected to diffuse with no substantial energy barriers and substantial preference in any specific direction at room temperature. For dimer Au2 on the oxide surface, the calculations indicate that the dimer is thermally more stable than monomer, with an oxide-Au bonding energy 0.78 eV, and favors a geometry that one Au atom bonds with an O of the oxide surface and the other dangles. The dimer Au2 prefers to diffuse on the oxide in stand-up way more than in rolling way.
關鍵字(中) ★ 第一原理
★ 密度泛函理論
★ 氧化鋁
★ 金奈米粒子
關鍵字(英) ★ first principle
★ DFT
★ θ-Al2O3
★ Au nano-clusters
論文目次 Contents
Chapter 1 Introduction.........................................................................................1
Reference..................................................................................................3
Chapter 2 Literature Survey...............................................................................5
2-1 Al2O3/NiAl(100)………………………………………………………5
2-1-1 The properties of NiAl (100)……………………...……………….5
2-1-2 θ-Al2O3 growth on NiAl (100)……………………………………..6
2-2 Diffusion of atoms on a surface……………………………………….9
2-3 Literature survey of metal clusters on metal-oxide surface studied with DFT calculations………………………...…………………………...11
Reference…………………………………….…………………………13
Chapter 3 Calculation Methods…………………………….……………….14
3-1 Born-Oppenheimer approximation………….…….………………....14
3-2 Hartree-Fork equation………………………….…………………….15
3-3 Hartree-Fork approximation…………………………………………17
3-4 Density functional theory…………………………………………….17
3-5 Local Density Approximation………………..…………...………….20
3-6 Generalized Gradient Approximation…………….………………….21
3-7 Pseudopotential……………………...……………………………….24
Reference……………………………………………………………….28
Chapter 4 Results and Discussion …………………………………….….…29
4-1 Determining the surface structure of θ-Al2O3(001)………....……….29
4-2 1~2Au on θ-Al2O3(001)……….......................................……………36
4-2-1 Determining the slab thickness of the θ-Al2O3(001) model….....36
4-2-2 Adsorption of Au1~2 atoms on θ-Al2O3(001) surface…..……….38
4-2-3 Diffusion of Au1~2 on the θ-Al2O3(001) surface…..……………….61
Reference……………………………….………………………………64
Chapter 5 Summary and Future work…………………………………….65
參考文獻 [1] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 2 (1987) 405.
[2] B. Hammer, J.K. Nørskov, Nature 376 (1995) 238.
[3] P. Pyykkö, Angew. Chem. Int. Ed. 43 (2004) 4412.
[4] N. Saliba, D.H. Parker, B.E. Koel, Surf. Sci. 410 (1998) 270;
J. Wang, B.E. Koel, J. Phys. Chem. A 102 (1998) 8573;
A.G. Sault, R.J. Madix, C.T. Campbell, Surf. Sci. 169 (1986) 347.
[5] T. Salama, R. Ohnishi, T. Shido,M. Ichikawa, J. Catal. 162 (1996) 169.
[6] J.A. Rodriguez, G. Liu, T. Jirsak, J. Hrbek, Z. Chang, J. Dvorak, A. Maiti, J. Am. Chem. Soc. 124 (2002) 5242.
[7] J.A. Rodriguez, M. Pérez, T. Jirsak, J. Evans, J. Hrbek, L. González, Chem. Phys. Lett. 378 (2003) 526.
[8] T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 178 (1998) 566.
[9] R. Grisel, K.J. Weststrate, A. Gluhoi, B.E. Nieuwenhuys, Gold Bull. 35 (2002) 39.
[10] C. Lemire, R. Meyer, S. Shaikhutdinov, H.J. Freund, Angew. Chem. Int. Ed. 43 (2004) 118.
[11] R. Zanella, S. Giorgio, C.H. Shin, C.R. Henry, C. Louis, J. Catal. 222 (2004) 357.
[12] M. Haruta, Catal. Today 36 (1997) 153.
[13] G.C. Bond, D.T. Thomson, Catal. Rev.-Sci. Eng. 41 (1999) 319.
[14] J.-D. Grunwaldt, C. Kiener, C. Wögerbauer, A.J. Baiker, J. Catal. 181 (1999) 223.
[15] J.-D. Grunwaldt, A. Baiker, J. Phys. Chem. B 103 (1999) 1002.
[16] J.-D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli, A. Baiker, J. Catal. 186 (1999) 458.
[17] M. Haruta, in: 3rd World Congress on Oxidation Catalysis, San Diego, 1997, p.123.
[18] M. Haruta, M. Daté, Appl. Catal. A 222 (2001) 427.
[19] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, J. Catal. 113 (2001) 197.
[20] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, Surf. Sci. 602 (2008) 241-248
[21]. Nicolas Frémy, Vincent Maurice, and Philippe Marcus, J. Am. Ceram. Soc., 86 (2003) 669–75
[22]. Vincent Maurice, Nicolas Frémy, Philippe Marcus, Surf. Sci. 581 (2005) 88–104
[1] From atoms to crystallites: adsorption on oxide-supported metal Particles.
Martin Frank and Marcus Baumer, Phys. Chem. Chem. Phys..
[2] Bor-Ru Sheu and D. R. Strongin, Journal of ctalysis 154 (1995) 379-390.
[3] Ch. ToÈlkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa, Phys. Rev. Lett. 80 (1998) 2877.
[4] Ralf-peter Blum, Dirk Ahlbehrendt, Horst Niehus, Surf. Sci. 366 (1996) 107-120.
[5] Ralf-peter Blum, Dirk Ahlbehrendt, Horst Niehus, Surf. Sci. 396 (1998) 176-188.
[6] D.R. Mullins, S.H. Overbury, Surf. Sci. 199 (1988) 141.
[7] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (1988) 1942-1951.
[8] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95-109.
[9] K.-H. Hellwege, Ed., Landolt-Börnstein, Bd.ш/7b(Springer, Heidelberg, 1975).
[10]. M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, and C.C. Kuo, Nanotechnology 17 (2006) 360.
[11] King-Ning Tu, James W. Mayer, Leonard C. Feldman, Electronic Thin Film Science, Capture 5.1
[12] Charles Kittel and Herbert Kroemer, Thermal Physics, 2nd ed. (Freeman & Co.: New York, 1980).
[13] Andrea Vittadini, Annabella Sellini, J. Chem. Phys. 117 (2002) 353
[14] Yun Wang, Gyeong S. Hwang, Surf. Sci. 542 (2003) 72-80
[15] You Han, Chang-jun Liu, Qingfeng Ge, J. Phys. Chem. B 110 (2006) 7463-7472
[16] Chenggang Zhou, Jinping Wu, T. J. Dhilip Kumar, Naduvalath Balakrishnan, Robert C. Forrey, Hansong Cheng, J. Phys. Chem. C 111 (2007) 13786-13793
[1] M. Born and K. Huang, Dynamical Theory of Crystal Lattice. Oxford University Press, 1954.
[2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[3] W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
[4] D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[5] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[6] J. P. Perdew, Y. Wang, Phys. Rev. B. 45, 13244 (1992).
[7] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998).
[1]. Husson, E.; Repelin, Y., ICSD, CC=82504
[2]. P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95-109.
[3]. Nicolas Frémy, Vincent Maurice, and Philippe Marcus, J. Am. Ceram. Soc., 86 (2003) 669–75
[4]. Vincent Maurice, Nicolas Frémy, Philippe Marcus, Surf. Sci. 581 (2005) 88–104
[5]. M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942–1951
[6]. J. Ho, K. M. Erwin, and W. C. Lineberger, J. Chem. Phys. 93 (1990) 6987
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2009-3-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明