博碩士論文 952202031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.135.186.14
姓名 林威佑(Wei-yu Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質
(A Deuterium NMR Study of DPPC/POPE/Sterol Model Membranes)
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ 麥角固醇對含膽固醇的脂雙層膜的影響
★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes
★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質
★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study★ The physical properties of phytosterol-containing lipid bilayers
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 固醇結構對PC膜物理特性的影響★ 人造細胞膜的相行為及脂質-固醇交互作用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究在利用核磁共振儀(2H NMR)去探討由DPPC和POPE兩種脂質組成;以及由DPPC,POPE和麥角固醇(ergosterol)或膽固醇(cholesterol)三種脂質組成的人造細胞膜的物理性質。
以氘取代DPPC及POPE sn-1 鏈上的氫,藉此量測DPPC與POPE的行為。我們發現當DPPC與POPE混合之後,DPPC的相變溫度(Tm)降低,而POPE的Tm上升。在1:1 DPPC/POPE中,DPPC與POPE有相同的Tm且兩者的M1對溫度的變化相似。因此我們認為DPPC與POPE間有很強的交互作用,且這些分子均勻分佈在細胞膜上。此外,當脂質分子處於so狀態時,分子間的交互作用強度依序為:DPPC-DPPC > DPPC-POPE > POPE-POPE。
比較含固醇的細胞膜及未含固醇的細胞膜的結果,我們發現,在1:1 DPPC/POPE細胞膜中加入固醇會產生lo態。固醇會降低so態細胞膜的有序程度,但會增加在ld態細胞膜的有序程度。麥角固醇的效應比膽固醇弱。此外,不論有無加入固醇,DPPC與POPE間都具有強交互作用。我們也發現在含膽固醇的細胞膜中,膽固醇與DPPC與POPE的交互作用較平均;然而,在含麥角固醇的細胞膜中,麥角固醇-DPPC的交互作用大於麥角固醇-POPE。
摘要(英) This study focuses on the physical properties of model membranes for binary mixture containing DPPC and POPE, and ternary mixtures containing DPPC, POPE, and ergosterol or cholesterol using 2H NMR.
DPPC and POPE were deuterium labeled alternatively such that the behavior of both DPPC and POPE can be observed. We found that mixing DPPC and POPE lowers the melting temperature Tm of DPPC, but raises the Tm of POPE. In this binary mixture, DPPC and POPE have the same Tm and similar temperature-dependence in their order parameter M1, suggesting a strong interaction between DPPC and POPE, and well mixing of the two lipids. In addition, the magnitude of lipid-lipid interaction in the so (gel or ) phase is in the following order: DPPC-DPPC > DPPC-POPE > POPE-POPE.
The results of ternary mixtures containing sterol are compared with those of binary mixture to investigate the effect of sterol. The addition of sterol to 1:1 DPPC/POPE membranes promotes the formation of lo (liquid ordered phase) phase. Sterol decreases the order of gel-phase membranes, while increases that of ld (liquid disordered) phase membranes. The effect of ergosterol is less strong than cholesterol. In addition, the interaction between DPPC and POPE is strong with or without sterol. Regarding the lipid-sterol interaction, cholesterol interacts equally with both DPPC and POPE in the ternary mixtrure. However, ergosterol interacts more strongly with DPPC than with POPE in the ternary.
關鍵字(中) ★ 核磁共振
★ 人造細胞膜
★ 膽固醇
★ 麥角固醇
關鍵字(英) ★ cholesterol
★ DPPC
★ POPE
★ ergosterol
★ NMR
論文目次 CONTENTS
Abstract in Chinese…………………………………………………….Ⅰ
Abstract………………………………………………………………....Ⅱ
Acknowledgements……………………………………………………..Ⅲ
Contents…...………………………………………………………….....Ⅴ
List of Figures……………………………………………………….….Ⅷ
List of Tables…………………………………………………...…….…Ⅹ
Chapter 1 Introduction…………………………………………………1
1.1 Lipids and Lipid Raft..……………………………………1
1.2 DPPC and POPE…………………………………………..3
1.3 Lipid-lipid Interactions…………………………………….4
1.4 Ergosterol and Cholesterol………………………………6
1.5 Sterols-lipids Interactions………………………………….7
Chapter 2 Experimental Materials and Methods….………………...10
2.1 Sample Preparation……………………………………….10
2.2 Principle of NMR………………………………………...11
2.2.1 Introduction of NMR………………………………...11
2.2.2 Zeeman Effect……………………………………..12
2.2.3 Quadrupole Coupling……………………………...14
2.2.4 Deuterium Quadrupolar Splitting for Rigid Molecules in Liquid-crystalline Phase and The Segment Order Parameters SCD……………………………………...17
2.2.5 First Moment M1.........................................................20
2.3 Method of Estimating The Average Acyl Chain Length and The Average Area Per Lipid……..…………..…………...20
2.3.1 Estimation of The Average Acyl Chain Length.……..21
2.3.2 Estimation of The Average Area Per Lipid…………..22
Chapter 3 Result and Discussion…………………………………...…24
3.1 Binary Mixture in The Absence of Sterol…….…………..24
3.1.1 Spectra of 1:1 DPPC/POPE Bilayer……………….24
3.1.2 First Moment (M1) of 1:1 DPPC/POPE Bilayer…...26
3.1.3 More Insight into 1:1 DPPC/POPE Bilayer……….28
3.2 Ternary Mixture in The Presence of Sterol……………...31
3.2.1 Ergosterol in 1:1 DPPC/POPE Bilayer………………31
3.2.2 Cholesterol in 1:1 DPPC/POPE Bilayer……………..35
Chapter 4 The Sterol-lipid Interactions………...…………………….37
4.1 Compare 1:1:1 DPPC/POPE/ergosterol with 1:1:1 DPPC/POPE/cholesterol…………………………………37
4.2 Sterol-Lipid Interaction….....…………………………….41
Chapter 5 Conclusion………………………………………………….45
5.1 Pure DPPC, Pure POPE, and Binary Mixture 1:1 DPPC/POPE……………………………………………...45
5.2 The Presence of Ergosterol and Cholesterol………...……46
Chapter 6 Appendix………...………………………………………..48
References………………………………………………………………56
參考文獻 [1] Nagle, J. F. and Tristram-Nagle, S. 2000. Structure of lipid bilayers. Biochim. Biophys. Acta. 1469:159–195.
[2] Raffy, S. and Teissie, J. 1999. Control of lipid membrane stability by cholesterol content. Biophys. J. 76:2072–2080.
[3] Tanford, C. 1980. The Hydrophobic Effect, 2nd edn. Wiley, New York.
[4] Hsueh, Y.-W., K. Gilbert, C. Trandum, M. Zuckermann, and J. Thewalt. 2005. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study. Biophys. J. 88:1799–1808.
[5] Jaworsky, M., and Mendelsohn, R. 1985. Fourier-transform infrared studies of CaATPase partitioning in phospholipid mixtures of 1,2-Dipamitoyphosphatidylhoned with 1-Palmitoyl-2-oleoylphosphatidylethanolamine and 1-Stearoy 1-2-oleoylp hosphatidylcholine Biochemistry. 24:3422–3428.
[6] Sun, W.J., Suter, R.M., Knewtson, M.A., Worthington, C.R., Tristram-Nagle, S., Zhang, R., and Nagle, J.F. 1994. Order and disorder in fully hydrated unoriented bilayers of gel phase dipalmitoylphosphatidylcholine. Phys. Rev. E, 49:4665.
[7] Michael R., Peter L., and Georg P. 2004. Structure and elasticity of phospholipid bilayers in the Lα phase: A comparison of phosphatidylcholine and phosphatidylethanolamine membranes. Recent Res. Devel. Biophys., 3: 81–7895–130–4.
[8] Robin L. T., Steven W. D., and Michael F. B. 1991. Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Biophys. J. 59:108–113.
[9] Hitchcock, P. B., Mason, R., and Shipley, G. G. 1975. Phospholipid arrangements in multilayers and artificial membranes: quantitative analysis of the X-ray diffraction data from a multilayer of 1,2-dimyristoyl-DL-phosphatidylethanolamine. J. Mol. Biol. 94:297–299.
[10] Blume, A., Wittebort, R. J., Das Gupta S. K., and Griffin, R. G. 1982. Phase equilibria, molecular conformation, and dynamics in phosphatidylcholine phosphatidylethanolamine bilayers. Biochemistry. 21:6243–6253.
[11] de Vries, A. H., Mark, A. E., and Marrink, S. J. 2004. The binary mixing behavior of phospholipids in a bilayer: a molecular dynamics study. J. Phys. Chem. B. 108:2454–2463.
[12] Murzyn, K., Ro′g, T., and Pasenkiewicz-Gierula, M. 2005. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys. J. 88:1091–1103.
[13] Yeagle, P. L., Albert, A. D., Boesze-Battaglia, Young, K. J. and Frye, J. 1990. Cholesterol dynamics in membranes. Biophys. J. 57:413–424.
[14] Simons, K., and Ikonen, E. 2000. Cell biology-how cells handle cholesterol. Science. 290:1721–1726.
[15] Kusumi, A., Tsuda, M., Akino, T., Ohnishi, O., Terayama, Y. Biochemistry 1983, 22, 1165–1170.
[16] Bloch, K. In Biochemistry of Lipids and Membranes. Vance, J. E., Vance, D. E., Eds., Benjamin/Cummins Publishing Co. Inc. New York, 1985; pp 1–24.
[17] Simons, K., Toomre, D. Nat. ReV. Mol. Cell Biol. 2000, 1, 31–39.
[18] McMullen, T. P. W., and McElhaney, R. N. 1996. Physical studies of cholesterol-phospholipid interactions. Curr. Opin. Colloid Interface Sci. 1:83–90.
[19] Bloch, K. 1981. Sterol structure and membrane function. Curr. Top. Cell. Regul. 18:289–299.
[20] Mouritsen, O. G., and Zuckermann, M. J. 2004. What’s so special about cholesterol? Lipids. 39:1101–1113.
[21] Vist M.R., and Davis J.H.1990. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464.
[22] Thewalt, J. L. and Bloom, M. 1992. Phosphatidylcholine phase diagrams. Biophys. J. 63:1176–1181.
[23] Linseisen, F. M., Thewalt, J. L., Bloom, M. and Bayerl, T.M. (1993). 2H NMR and DSC study of SEPCcholesterol mixtures. Chemistry and Physics of Lipids 65:141–149.
[24] Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. 1987. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochimica et biophysica acta 905(1):162–72.
[25] Clarke , J. A., Heron, A. J., Seddon, J. M. and Law, R.V. 2006. The diversity of the liquid ordered (lo) phase of phosphatidylcholine/cholesterol membranes: a variable temperature multinuclear solid-state NMR and X-ray diffraction study. Biophys. J. 90:2383-2393.
[26] Urbina, J. A., Pekerar, S., Le, H. B., Patterson, J., Montez B., and Oldfield, E. 1995. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using2H-, 13C- and 31P-NMR spectroscopy. Biochim. Biophys. Acta. 1238:163–176.
[27] Chantal Pare′ and Michel Lafleur. 1998. Polymorphism of POPE/Cholesterol System: A 2H Nuclear Magnetic Resonance and Infrared Spectroscopic Investigation. Biophys. J. 74:899–909.
[28] Lafleur, M., Fine, B., Sternin, E., Cullis, P. R., and Bloom, M. 1989. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys. J. 56:1037–1041.
[29] Salmon, A., Dodd, S. W., Williams, G. D., Beach, J. M., and Brown, M. F. 1987. Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2H NMR. J. Am. Chem. Soc. 109:2600 –2609.
[30] Seelig, J. 1977. Deuterium magnetic resonance: theory and application to lipid membranes. Q. Rev. Biophys. 10:353– 418.
[31] Seelig, J., and Seelig, A. 1980. Lipid conformation in model membranes and biological membranes. Q. Rev. Biophys. 13:19–61.
[32] Davis, J. H. 1983. The description of membrane lipid conform
ation, order and dynamics by 2H-NMR. Biochim. Biophys. Acta. 737:117- 171.
[33] Ulrich, A. S., and Watts, A. 1994. Molecular response of the lipid headgroup to bilayer hydration Monitored by 2H-NMR. Biophys. J. 66:1441–1449.
[34] Oldfield, E., Meadows, Rice, M. D., and Jacobs, R. 1978. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of effects of cholesterol in model systems. Biochemistry. 17:2727–2740.
[35] Seelig, A., and Seelig. J. 1974. The dynamic structure of fatty acyl chains in a phosphatidylcholine bilayer measured by deuterium magnetic res-onance. Biochemistry. 13:4839 – 4845.
[36] DeYoung, L. R., and Dill, K. A. 1988. Solute partitioning into lipid bilayer membranes. Biochemistry. 27:5281–5289.
[37] Schindler, H., and Seelig, J. 1975. Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. Biochemistry. 14:2283–2287.
[38] Nagle, J. F. 1993. Area/lipid of bilayers from NMR. Biophys. J. 64: 1476–1481.
[39] Douliez, J.-P., Le′onard, A., and Dufourc, E. J. 1995. Restatement of order parameters in biomembranes: calculation of C–C bond order parameters from C–D quadrupolar splittings. Biophys. J. 68:1727–1739.
[40] Lis, L. J., McAlister, M., Fuller, N., Rand, R. P., and Parsegian,V. A. 1982. Interactions between neutral phospholipid bilayer membranes. Biophys. J. 37:657–666.
[41] Rand, R. P., and Fuller, N. 1988. Variation in Hydration Forces between Neutral Phospholipid Bilayers: Evidence for Hydration Attraction. Biochemistry. 27:771 1–7722.
[42] Petrache, H. I., Dodd, S. W., and Brown, M. F. 2000. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys. J. 79(6): 3172–3192.
[43] Nagle, J. F. 1993. Area/lipid of bilayers from NMR. Biophys. J. 64: 1476–1481.
[44] Petrache, H. I., Tu, K., and Nagle, J. F. 1999. Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophys. J. 76:2479 –2487.
[45] Nagle, J. F., Zhang, R., Tristram-Nagle, S., Sun,W.-J., Petrache, H. I., and Suter, R. M. 1996. X-ray structure determination of fully hydrated La phase dipalmitoylphosphatidylcholine bilayers. Biophys. J. 70:1419–1431.
[46] Hu‥bner, W., and Blume, A. 1998. Interactions at the lipid-water interface. Chem. Phys. Lipids. 96:99–123.
[47] Sikit L., and Sum, A. K. 2006. Molecular simulation study of study of structural and dynamic properties of mixed DPPC/DPPE bilayers. Biophys. J. 90:3951–3965.
[48] Frances, N., Marjolaine, C., Oleg, K., Yuji, I., Ka Yee C, L., Ivan, K., Girish M, K., and David, G. 2006. Lipid headgroup discrimination by antimicrobial peptide LL-37: Insight into mechanism of action. Biophys. J. 90:1275–1287.
[49] Paul E. H., David A. M., Ruthven N. A. L., Ronald N. M., and Sol M. G. 2001. X-ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases. Biophys. J. 81:2693–2706.
[50] Clarke , J. A., Heron, A. J., Seddon, J. M. and Law, R.V. 2006. The diversity of the liquid ordered (Lo) phase of phosphatidylcholine/cholesterol membranes: a variable temperature multinuclear solid-state nmr and X-ray diffraction study. Biophysical Journal. 90:2383–2393.
[51] Vanderkooi, G. 1994. Computation of mixed phosphatidylcholine-cholesterol bilayer structures by energy minimization. Biophys. J. 66:1457–1468.
[52] Guerneve, C. L., and Auger, M. 1995. New approach to study fast and slow motions in lipid bilayers: application to dimyrstoylphosphatidylcholine- cholesterol interactions. Biophys. J. 68:1952–1959.
[53] Pandit, S. A., Bostick, D. and Berkowitz, M. L. 2004. Complexation of phosphatidylcholine lipids with cholesterol. Biophys. J. 86:1345–1356.
[54] Alexander M., Smondyrev, Max L. B. 2001. Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with Cholesterol, Ergosterol, and Lanosterol. Biophys. J. 80:1649–1658.
[55] Cournia, Z., Ullmann, G. M., and Smith, J. C. 2007. Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: A molecular dynamics simulation study. J. Phys. Chem. B. 111:1786–1801.
[56] Li, X. M., Momsen, M. M., Brockman, H. L. and Brown, R. E. 2003. Sterol structure and sphingomyelin acyl chain length modulate lateral packing elasticity and detergent solubility in model membranes. Biophys. J. 85:3788 –3801.
[57] Risselada, H. J. and Marrink, S. J. 2008. The molecular face of lipid rafts in model membranes. PNAS. 105:17367–17372.
[58] Brown, D. A. and London, E. 1998. Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14:111–136.
[59] Anderson, T. G., and McConnell, H. M. 2001. Condensed complexes and the calorimetry of cholesterol-phospholipid bilayers. Biophys. J. 81:2774–2185.
[60] Keller, S. L., Pitcher, W. H., III., Huestis, W. H., and McConnell, H. M. 1998. Red blood cells lipids form immiscible liquids. Phys. Rev. Lett. 81, 5019-5022.
指導教授 薛雅薇(Ya-wei Hsueh) 審核日期 2009-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明