博碩士論文 952202035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:35.170.76.39
姓名 楊家瑋(Chia-wei Yang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 膠體球在電解質溶液中的擴散泳
(Diffusiophoresis of Polystyrene Spheres in Electrolyte Solutions)
相關論文
★ 庫倫作用粒子之動力學★ 帶電粒子在離子流中之交互作用
★ 肥皂膜上的能量耗散★ 紙片落下之行為研究
★ 外加場下肥皂膜的能量耗散★ 圓柱體在二維垂直肥皂膜之動力學
★ 螺旋狀物體在剪切流中的運動行為★ 二元高分子薄膜在平行電場下的相分離
★ 纖毛不對稱運動的模擬★ 肥皂膜流場中圓柱體之行為研究
★ 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論★ 彈性懸掛棍在旋轉系統下之行為
★ 細長彈性桿在旋轉下的非線性動力行為與動態穩定性分析★ Thermophoresis and Diffusiophoresis in Brownian Simulation with Velocity Distribution Function
★ 剛體球在不對稱垂直震盪系統中的動力學行為★ Water Strider Locomotion
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們實驗主要探討一微米大小的膠體球在有著氯化鈉溶液(葡萄糖溶液)的濃度梯度微通道中的動力學行為。實驗裝置由微通道連結了兩個槽:其中一個槽注滿了氯化鈉溶液(葡萄糖溶液),另外一個則是注滿去離子水。又兩邊槽的濃度不同,因此離子(分子)會從高濃度擴散到低濃度,所以會在微通道內建立起濃度梯度。我們藉由顯微鏡記錄膠體球位置隨時間的變化,因此就可以量測出膠體球在氯化鈉溶液(葡萄糖溶液)濃度梯度下的平均速度,然而我們發現膠體球在此兩溶液的運動方向相反。此外我們也發現到膠體球在氯化鈉溶液中,膠體球的速度正比氯化鈉溶液濃度開方根,而這符合了由Debye-Huckel的理論為基礎出發所推出的關係式。最後我們也把結果代入了Deryagin的團隊所提出來的理論,結果發現表面電荷隨著氯化鈉的濃度上升而上升,而這也符合了由Prieve的團隊所做出的實驗結果。
摘要(英) In this thesis we investigate dynamical properties of 1 micrometer colloids placed in a narrow channel which is filled with a sodium chlorine solution and a glucose solution with a concentration gradient. Our device contains two reservoirs: one contains a NaCl solution, and the other is pure water. They are connected by a narrow channel of 60 micrometer depth and 0.5 mm in width. Because of the different NaCl/glucose concentration in the reservoirs, the ions of NaCl and molecules of glucose would diffuse from the high concentration reservoir to the low-concentration one, and a concentration gradient set up. By recording the motion of colloids under a microscopic, we study the colloids random motion and average flux induced by concentration of the NaCl. However, we find the the direction of the migration of the colloids in the NaCl solution are very different to be compared in the glucose solution. The colloids in the NaCl solution move from the higher concentration to the lower one, and the opposite direction occur in the glucose solution. We find that the velocity of colloid is proportional to square root of concentration in dilute region which is consistent with the derivation of the relation between the concentrations and the velocities in dilute concentration based on Debye-Huckel theory. Furthermore, we compare the experimental result with the theory proposed by Deryagin and co-workers, the surface charges increase with the concentration of the electrolyte solutes increasing.
關鍵字(中) ★ 擴散泳
★ 濃度梯度
★ 膠體球
關鍵字(英) ★ diffusiophoresis
★ concentration gradient
★ colloid
論文目次 1 Introduction 1
2 Theory 7
2.1 Mean Free Path . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Debye-Huckel theory . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Theory of Deryagin, Dukhin, and Korotkova . . . . . . . . . . 12
3 Apparatus and experiment 14
3.1 Preparation of the samples and devices . . . . . . . . . . . . . 14
3.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 The measurement of the experiment . . . . . . . . . . . . . . 18
4 Result and Discussion 25
4.1 The colloid inverse migration caused by ionization of solutions 25
4.2 Diffusion constants under various concentrations of Nacl . . . 27
4.3 The effect of various concentration of NaCl . . . . . . . . . . 31
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Conclusion 43
參考文獻 [1] C. Ludwig, Sitzungsber. Akad. Wiss. Wein 20, 539 (1856).
[2] R Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002).
[3] Wiegand, S. J.Phys. Condense. Matter 16, R357 (2004).
[4] S. Duhr and D. Braun, Phys. Rev. Lett. 96, 168301, (2006).
[5] S. A. Putnam, D. G. Cahill, and G. C. L. Wong, Langmuir 23, 9221
(2007).
[6] Sebastien Fayolle, Thomas Bickel, and Alois Wurger, Phys. Rev. E 77,
041404 (2008).
[7] S. Duhr and D. Braun, Proc. Natl. Acad. Sci. U.S.A 103, 19678 (2006).
[8] Ruckenstein, E. J. Colloid Interface Sci. 83, 77 (1981).
[9] K. I. Morozov, J. Exp. Theor. Phys. 88, 944 (1999).
[10] Albert Parola and Roberto Piazza, Phys: Comdens. Matter 17 (2005).
[11] E. Bringuier and A. Bourdon, phys. Rev. E 67, 011404 (2003).
[12] B. V. Deryagin, S. S. Dukhin, A. A. Korotkova, Kolloidn. Zh. 23, 409
(1961)
[13] J. L. Anderson, Phy. Chem. Hydrodynamics. 1, 51 (1980)
[14] D. C. Prieve, Advance in Colloid and Interface Science, 16 321 (1982)
[15] R. W. O’Brien, and L. R.White, J. Chem. Soc. Faraday. Trans. 2 74,
1607(1978)
[16] R. W. O’Brien, J. Colloid Interface Sci 92, 204 (1983)
[17] D. C. Prieve, J. L. Anderson, J. P. Ebel, and M. E. Lowell, J. Fluid
Mech. 148, 247 (1984)
[18] Charles Kittel and Herbert Kroemer (1980), Thermal Physics, W. H.
Freeman and Company San Fancisco
[19] B. Chun, A. J. C. Ladd, J. Colloid Interface Sci. 274, 687 (2004)
[20] Hans C. Adersen and David Chandler, The Journal of Chemical Physics.
55 , 4 (1971)
[21] J. M. Roberts, J. J. O’Dea, and J. G. Osteryoung, Anal. Chem. 70,
3667 (1998)
指導教授 陳培亮(Peilong Chen) 審核日期 2009-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明