博碩士論文 952202037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.226.76.216
姓名 汪政廷(Cheng-Ting Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
(Probing the structures underneath the surface of θ-Al2O3/NiAl(100) and Au-Pt bimetallic clusters supported on the θ-Al2O3/NiAl(100))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們用掃描穿隧顯微鏡(STM)探測θ-Al2O3/NiAl(100)底層的結構
以及鍍在其上的Au-Pt雙金屬團簇。在不同的設定時,電子會從針尖
穿隧到不同的氧化層並且顯示表面之下的結構。這可以藉由相對能階和樣品的空軌域來理解。利用氣相沈積法,我們在300 K 溫度下,將金以及白金原子連續的鍍上。後鍍的金屬加入已存在的團簇的比例會隨著鍍量增加。在0.06 ML Pt/θ-Al2O3/NiAl(100)表面上,後鍍上的金會加入已存在的團簇的比率從 43 % 降到 21 %。大部分的金形成純的單金屬團簇。相比之下,在0.22 ML Pt/θ-Al2O3/NiAl(100)表面上,此比率會從 52 % 上升到 71 %。在Pt/Au/θ-Al2O3/NiAl(100)表面上,後鍍上的0.17 ML Pt會加入先鍍上的0.13 ML金團簇的比率是 58 %。加熱到450 K,鍍量從1 ML降到0.3 ML。加熱到700 K,鍍量是0.2 ML。大部分的金屬擴散到基底。
摘要(英) We have probed the structures beneath the surface of thin film θ-Al2O3/NiAl(100) and Au-Pt bimetallic clusters on θ-Al2O3/NiAl(100) with a scanning tunneling microscope (STM).
With different settings, electrons tunnel from tip to different oxide layers and show the morphology of the structures beneath the surface. It is understood by the related energy level and the unoccupied states of the sample.
On θ-Al2O3/NiAl(100), Au and Pt atoms are sequentially vapor deposited at 300 K. The ratio for the later deposited metal joining existing clusters depends on the coverage. In the presence of 0.06 ML Pt on θ-Al2O3/NiAl(100) surface, the ratio for the later deposited Au joining the existing clusters is decreased from 43 % to 21 %. Most of the Au atoms form new pure clusters; in contrast, the ratio is increased on 0.22 ML Pt/θ-Al2O3/NiAl(100) surface from 52 % to 71 %. For Pt/Au/θ-Al2O3/NiAl(100), the ratio for the later deposited Pt (0.17 ML) joining existing Au clusters (0.13 ML) is 58 %. After annealing to 450 K, the coverage decreases from 1 ML to 0.3 ML. After annealing to 700 K, the coverage is 0.2 ML. Most of the metals diffuse to the substrate.
關鍵字(中) ★ 氧化鋁
★ 顆粒
★ 掃描穿隧顯微鏡
★ 奈米
★ 金
★ 鉑
★ 表面物理
關鍵字(英) ★ NiAl
★ nano
★ scanning tunneling microscope
★ STM
★ cluster
★ nanocluster
★ surface science
★ Al2O3
★ Pt
★ Au
論文目次 Chapter 1 Introduction ...................................1
Reference .......................................3
Chapter 2 Literature Survey ...................................................4
2.1 Properties of NiAl(100) ..............................4
2.2 The structure of θ-Al2O3 on NiAl(100) ................5
2.3 Au-Pt bimetallic clusters ...........................17
Reference ......................................22
Chapter 3 Experimental Instruments ......................24
3.1 Vacuum system .......................................24
3.1.1 Introduction of vacuum ............................24
3.1.2 UHV system ........................................25
3.1.3 Experimental equipments ...........................27
3.2 Scanning Tunneling Microscopy (STM) .................29
3.2.1 Operation principles of STM .......................29
3.2.2 Operation of STM ..................................32
3.2.3 RHK-300 STM in experiment .........................35
3.2.4 Preparing the STM tips ............................38
3.3 Experimental procedures .............................39
3.3.1 Outline ...........................................39
3.3.2 Details of experiments ............................40
Reference .........................................43
Chapter 4 Results and Discussions .......................44
4.1 Probing the structures below the surface of θ-Al2O3/NiAl(100) .........................................44
4.2 The DFT calculation of θ-Al2O3/NiAl(100) ............60
4.3 Au-Pt bimetallic nano-clusters on Al2O3/NiAl(100) surface .................................................65
4.3.1 Deposition of Au atoms on 0.06 ML Pt/Al2O3/NiAl(100) ...................................................66
4.3.2 Deposition of Au atoms on 0.22 ML Pt/Al2O3/NiAl(100) ...................................................71
4.3.3 Deposition of Pt atoms on Au/Al2O3/NiAl(100) surface .................................................77
4.3.4 Annealed Au-Pt bimetallic clusters ................81
4.3.5 Concurrent deposition of Pt and Au atoms on Al2O3/NiAl(100) surface .................................87
Reference .........................................91
Chapter 5 Conclusions ...................................92
參考文獻 Reference:
Chapter 1 :
[1] Sinfelt, J. H. Bimetallic Catalysts: DiscoVeries, Concepts and Applications; Wiley: New York, 1994.
[2] Campbell, C. Annu. ReV. Phys. Chem., 41 (1990) 775.
[3] Rodriguez, J. A.; Campbell, C. T.; Goodman, D. W. Surf. Sci. 377 (1994) 307-309.
[4] Rodriguez, J. A. Surf. Sci. Rep. 24 (1996) 223.
[5] Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C.-J. Langmuir 22 (2006) 2892.
[6] Zeng, J.; Yang, J.; Lee, J. Y.; Zhou, W. J. Phys. Chem. B 110 (2006) 24606.
[7] Bus, E.; Bokhoven, J. A. v. J. Phys. Chem. C, 111 ( 2007) 9761.
[8] Liu, H. B.; Pal, U.; Ascencio, J. A. J. Phys. Chem. C 112 (2008) 19173.
[9] N. Nilius, M. Kulawik, H. P. Rust, H. J. Freund, Phys. Rev. B 69 (2004) 121401.
Chapter 2:
[1] D. A. King, D. P. Woodruff (Eds.), The Chemical Physics of Solid Surface, Growth and Properties of Ultrathin Epitaxial Layers, Vol. 8 (Elsevier, Amsterdam, 1997).
[2] R. P. Blum, H. Niehus, Appl. Phys. A 66 (1998) S529–S533.
[3] R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 366 (1996) 107.
[4] R. Franchy, Surf. Sci. Reports 38 (2000) 195.
[5] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95.
[6] N. Frémy, V. Mauruce, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
[7] D.R. Mullins, S.H. Overbury, Surf. Sci. 199 (1988) 141.
[8] R.M. Jaeger, K. Kuhlenbeck, H.J. Freund, M. Wuttig, W. Hoffmann, R. Franchy, H. Ibach, Surf. Sci. 259 (1991) 235.
[9] M. Bäumer, H. J. Freund, Progress in Surf. Sci. 61 (1999) 127.
[10] M. F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C. Kuo, Nanotechnology 17 (2006) 360.
[11] V. Maurice, N. Fre’my, P. Marcus, Surf. Sci. 581 (2005) 88.
[12] K. H. Hansen, T. Worren, E. Lægsgaard, F. Besenbacher, I. Stensgaard, Surf. Sci. 475 (2001) 96.
[13] S. Andersson, P. Bruhwiler, A. Sandell, M. Frank, J. Libuda, A. Giertz, B. Brena, A. Maxwell, H-J. Freund, N. Martensson, Surf. Sci. 442 (1999) L964.
[14] Pin-Jui Hsu, Chii-Bin Wu, Hong-Yu Yen, Sheng-Syun Wong, Wen-Chin Lin, Minn-Tsong Lin, Appl. Phys. Lett. 93 (2008) 143104.
[15] N. Nilius, M. Kulawik, H. P. Rust, H. J. Freund, Phys. Rev. B 69 (2004) 121401.
[16] S. Degen, A. Krupski 1, M. Kralj, A. Langner, C. Becker *, M. Sokolowski, K. Wandelt, Surf. Sci. 576 (2005) L57.
[17] J. A. Gardener, G. A. D. Briggs, M. R. Castell, Phys. Rev. B 80 (2009) 235434.
[18] J. Libuda, F. Winkelmann, M. Bäumer, H. J. Freund, T. Bertrams, H. Neddermeyer, K. Müller, Surf. Sci. 318 (1994) 61.
[19] M. C. Gallagher, M. S. Fyeld, J. P. Cowin, S. A. Joyce, Surf. Sci. 339 (1995) L909.
[20] T. Bertrams, A. Brodde, H. Neddermeyer, J. Vac. Sci. Technol. B 12 (1994) 2122.
[21] S. M. Lu, H. T. Shih, C. L. Jiang, W. B. Su, C. S. Chang, T.T. Tsong, Chinese J. Phys. 44/4 (2006) 309.
[22] A. Lehnert, A. Krupski, S. Degen, K. Franke, R. Decker, S. Rusponi, M. Kralj, C. Becker, H. Brune, K. Wandelt, Surf. Sci. 600 (2006) 1804.
[23] M. Born and K. Huang, Dynamical Theory of Crystal Lattice. Oxford University Press, (1954).
[24] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[25] Siqi Shi, Shingo Tanaka, Masanori Kohyama, J. Am. Ceram. Soc. 90 [8] (2007) 2429.
[26] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, Surf. Sci. 602 (2008) 241.
[27] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Surf. Sci. 600 (2006) 4978.
[28] Liz-Marza´n, L. M.; Philipse, A. P. J. Phys. Chem. 99 (1995) 15120.
[29] Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J.-L.; Delcourt, M.-O. New J. Chem. 22 (1998) 1239.
[30] Ge, Q.; Song, C.; Wang, L. Comput. Mater. Sci. 35 (2006) 247.
[31] H. B. Liu, U. Pal, J. A. Ascencio, J. Phys. Chem. C 112 (2008) 19173.
Chapter 3:
[1] Springer-Verlag, Surface and Interfaces of Solids.
[2] A. Chambers, R. K. Fitch, B. S. Halliday, Basic Vacuum Technology.
[3] Hans Lüth, Surface and Interfaces of Solid Materials.
[4] 真空技術與應用, 行政院國家科學委員會精密儀器發展中心出版.
[5] G. Binnig, H. Rohrer, E. Weibel, Appl.Phys. Lett. 40 (1982) 178.
[6] G. Binnig, H. Rohrer, E. Weibel, Phys. Rev. Lett. 50 (1983) 120.
[7] R. Eisberg, R. Resnick, QUANTUM PHYSICS OF ATOMS, MOLECULES, SOLIDS, NUCLEI, AND PARTICELS.
[8] B. J. Behm, N.Garcia, H. Rohrer, Scanning Tunneling Microscopy and Related Methods.
[9] R. H. Fowler, L. W. Nordheim, Proc. Roy. Soc. A 119 (1928) 173.
[10] Chen C. J., Introduction to Scanning Tunneling Microscopy (1993 New York: Oxford University Press).
[11] User’s guide of RHK-UHV 300.
[12] I. Ekvall, E. wahlstrom, D. Claesson, H. Olin, E. Olsson, Meas. Sci. Technol. 10 (1999) 11.
[13] R.P. Blum, H. Niehus, Appl. Phys. A 66 (1998) S529–S533.
[14] R.P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176.
[15] J. Me´ndez, H. Niehus, Appl. Surf. Sci. 142 (1999) 152.
[16] P. Gaussmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95.
[17] N. Frémy, V. Mauruce, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
[18] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942.
[19] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C.C. Kuo, Nanotechnology
17 (2006) 360.
Chapter 4:
[1] N. Frémy, V. Mauruce, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
[2] R.P. Blum, H. Niehus, Appl. Phys. A 66 (1998) S529–S533.
[3] R.P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176-188.
[4] J. Me´ndez, H. Niehus, Appl. Surf. Sci. 142 (1999) 152–158.
[5] M. Baumer, H.J. Freund, Prog. Surf. Sci. 61 (1999) 127-198.
[6] J. Libuda, F. Winkelmann, M. Bäumer, H.J. Freund, T. Bertrams, H. Neddermeyer, K. Müller, Surf. Sci. 318 (1994) 61.
[7] M.C. Gallagher, M.S. Fy®eld, J.P. Cowin, S.A. Joyce, Surf. Sci. 339 (1995) L909.
[8] Th. Bertrams, A. Brodde, H. Neddermeyer, J. Vac. Sci. Technol. B 12 (1994) 2122.
[9] S. M. Lu, H. T. Shih, C. L. Jiang, W. B. Su, C. S. Chang, T.T. Tsong, Chinese J. Phys. 44/4 (2006) 309.
[10] Pin-Jui Hsu, Chii-Bin Wu, Hong-Yu Yen, Sheng-Syun Wong, Wen-Chin Lin, Minn-Tsong Lin, Appl. Phys. Lett. 93 (2008) 143104.
[11] N. Nilius, M. Kulawik, H.P. Rust, H.J. Freund, Phys. Rev. B 69 (2004) 121401.
[12] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, Surf. Sci. 602 (2008) 241–248.
[13] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Surf. Sci. 600 (2006) 4978–4985.
[14] H. B. Liu, U. Pal, A. Ascencio, J. Phys. Chem. C 112 (2008) 19173-19177
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2010-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明