博碩士論文 952203001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.139.67.161
姓名 甘錫鴻(Seak-Hong Kam)  查詢紙本館藏   畢業系所 化學學系
論文名稱 1. 全氟化物氣相層析方法之建立及半導體工業中洗滌器效率評估之應用 2. 一氧化碳之平行比測與校正
(1. Assessment of Removal Efficiency of Perfluorocompounds for Local Scrubbers in Semiconductor Industry by Chromatographic Methods2. Intercomparison of Background Carbon Monoxide and Its Concentration Calibration )
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人造全氟化合物(perfluorocompounds, PFCs)是重要溫室效應氣體,被半導體與光電產業大量使用,這類產業通常以初級洗滌器(local scrubber)對PFCs進行移除以降低排放;然而,過去業界評估移除效率的方法是使用傅氏紅外光譜儀(Fourier Transform Infrared Spectrometry, FT-IR)搭配四極柱質譜(Quadrupole Mass Spectrometry, QMS),但該技術存在著儀器造價昂貴及高技術門檻等缺點。有鑑於此,本研究因而嘗試開發一套以氣相層析儀作為核心的PFC量測技術,利用填充管柱與切換技術對PFC物質進行線上或採樣分析,改良後之系統用來量測半導體廠洗滌器移除效率上,採樣袋量測結果顯示燃燒式洗滌器DAS對C3F8移除效率高達90%以上,而電熱式洗滌器CDO及KT的移除效率分別約45%及15%。最後以氦氣作為追踪劑成功量測DAS機型的稀釋因子,修正後的移除效率仍然達90%以上。
本論文第二個主題是背景一氧化碳的量測與校正。利用高靈敏高線性表現之真空紫外共振螢光儀(Vacuum-UV Resonance Fluorescence, VUV-RF),以四種不同濃度之一級標準品(介於64.9 ppbv 至 300 ppbv)校正五種濃度工作標準品 (介於 20 ppbv 至 250 ppbv);校正後二級標準品運用在安置於鹿林山背景站用於校正測站內之還原氣體分析儀(Reduced Gas Analyzer, RGA)與非分散式紅外光譜儀(Non-Dispersive IR, NDIR)。再以VUV-RF與背景測站之NDIR及RGA進行為期48天之平行比對,比對結果VUV-RF與RGA及NDIR之相關性可達到0.968及0.966,NDIR與RGA之相關性為0.983。
摘要(英) Man-made perflurorcompounds (PFCs) are very potent green house gases, which have been used in large quantity by semiconductor and LCD industries in Taiwan. Usually these chemicals are to be removed by local scrubbers to prevent them from direct emission into the atmosphere. Conventionally, the assessment methods for various types of local scrubbers rely heavily on Fourier Transform Infrared Spectrometry (FT-IR) coupled with Quadruple Mass Spectrometry (QMS). Major drawbacks of these techniques stem from their high cost and high leaning barrier for the industry. In light of these obstacles, this research attempted to develop an assessment technique based on Gas Chromatography (GC), employing packed column, thermal conductivity detection, and heart-cut techniques. The developed system was deployed in a semiconductor fabrication plant to assess the destruction and removal efficiency (DRE) of 3 types of local scrubbers. Both in-situ on-site and flask sampling were adopted in the DRE assessment. It was found that the combustion type of local scrubber (DAS brand) exhibited over 90% DRE for C3F8, whereas the electric-thermal type had lower DRE of 45% and 15% for the CDO and KT brand, respectively. This research also developed a novel method to determine dilution factor by using helium as a tracer. The re-assessed DRE for DAS after adoption of He based dilution factor was still over 90%, consistent with the earlier value derived by flow rate calculation.
The second topic of this research addresses the calibration and inter-comparison of carbon monoxide (CO) for background measurements. Five working standards in the range between 20 and 250 ppbv were accurately calibrated by 4 NOAA primary standards via a highly linear and sensitive instrument, i.e., vacuum-UV resonance fluorescence (VUV-RF). The 5 calibrated working standards were brought to the Lulin Atmospheric Baseline Station (LABS) for calibrating two CO instruments of reduced gas analyzer (RGA) and non-dispersive infrared (NDIR). Intercomparison between VUV-RF, RGA, and NDIR were carried out continuously for a period of 7 weeks. The correlation correlations (R2) for VUV-RF with RGA and NDIR are 0.968 and 0.966, respectively, whereas the R2 between NDIR and RGA is 0.983.
關鍵字(中) ★ 一氧化碳
★ 洗滌器
★ 鹿林
★ 溫室氣體
★ 全氟化物
★ 半導體
★ 氣相層析
★ 全氟化合物
關鍵字(英) ★ MS 5A
★ SF6
★ NF3
★ Gas chromatography
★ FTIR
★ QMS
★ Porapak Q
★ PFC
★ LABS
★ C2F6
★ C3F8
★ CF4
★ DRE
★ scrubber
★ RGA
★ VUV-RF
★ VURF
★ NDIR
★ carbon monoxide
★ CO
★ Perfluorocompounds
★ GC
論文目次 中文摘要 I
英文摘要 III
謝誌 V
目錄 VI
表目錄 XIII
第1章 前言 1
1-1 全氟化合物的大氣角色 1
1-2 溫室效應 2
1-3 溫室氣體 6
1-4 全氟化合物及其工業排放與減量 11
1-4-1 製鋁工業 14
1-4-2 製鎂工業 16
1-4-3 光電半導體工業 17
1-5 PFCs分析方法回顧 24
1-6 研究動機 26
第2章 全氟化合物分析系統之建立 28
2-1 全氟化合物分析系統設計 28
2-1-1 進樣系統設計 28
2-1-1 a 進樣迴圈壓力控制 30
2-1-1 b 進樣迴圈溫度之控制 31
2-1-2 熱傳導偵測器 33
2-1-3 時序控制軟體 35
2-1-4 層析管柱之選擇 35
2-1-5 雙管柱切換層析系統之建立 42
2-1-5 a 管柱(烘箱)初始溫度對C2F6及SF6分離之影響 45
2-1-5 b雙管柱切換系統切點之選擇 47
2-1-5 c系統穩定度 51
2-1-5 d 分析系統之線性 51
2-2 結果與討論 57
2-2-1 初級洗滌器移除效率之量測 57
2-2-2 以追踪劑(Tracer)檢驗初級洗滌器的移除效率 59
第3章 小結 66
PFCs參考資料: 67
第4章 一氧化碳 70
4-1 一氧化碳的大氣角色 70
4-2 一氧化碳分析方法回顧 74
4-3 研究動機 78
第5章 一氧化碳分析系統 79
5-1 真空紫外共振螢光光譜儀(VUV-RF) 79
5-1-1 VUV-RF偵測原理 79
5-1-2 VUV-RF之校正系統 80
5-2 非分散式紅外光譜儀 82
5-2-1 NDIR偵測原理 82
5-2-2 NDIR數據擷取以及訊號處理 83
5-3 氧化汞還原氣體摸組 84
5-3-1 汞還原偵測器之偵測原理 84
5-3-2 RGA訊號擷取及數據處理 87
5-4 結果與討論 89
5-4-1 VUV-RF系統檢量線製作與工作標準品校正 89
5-4-2 RGA系統檢量線的製作 91
5-5 NDIR與VUV-RF在室內高濃度環境下之平行比對 92
5-6 三儀器間低濃度環境下之平行比對 94
5-7 LABS CO監測結果 95
第6章 小結 102
第7章 論文總結 103
CO參考資料: 105
參考文獻 PFC:
[1] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 1: Historical overview of climate change science. Intergovernmental Panel on Climate Change, Page 97, 2007.
[2] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Summary for Policymakers. Intergovernmental Panel on Climate Change, Page 6, 2007.
[3] IPCC, Intergovernmental Panel on Climate Change Third Assessment Report. Chapter 6: Radiative Forcing of Climate Change. Intergovernmental Panel on Climate Change, Page 353,2001.
[4] IPCC, Intergovernmental Panel on Climate Change Third Assessment Report. Chapter 6: Radiative Forcing of Climate Change. Intergovernmental Panel on Climate Change ,Page 385, 2001.
[5] National Oceanic and Atmospheric Administration (NOAA), http://www.esrl.noaa.gov/gmd/ccgg/iadv/
[6] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 2 Changes in Atmospheric Constituents and in Radiative Forcing. Intergovernmental Panel on Climate Change, Page 131, 2007.
[7] Colin, B.; Michael, C. Environmental Chemistry 3th. Page 32
[8] Advanced Global Atmospheric Gases Experiment (AGAGE),
http://agage.eas.gatech.edu/data.htm
[9] Harnisch, J.; Borchers, R.; Fabian, P.; Gaggeler, H.W.; Schotterer, U. Effect of natural tetrafluoromethane. Nature 1996, 384, 32.
[10] Khalil, K.; Aslam, M.; Rasmussen, R.A.; Culbertson, J.A.; Prins, J. M.; Grimsrud, E.P.; Shearer, M.J. Atmospheric perfluorocarbons. Environ. Sci. Technol. 2003, 37, 4358-4361.
[11] Worton, D.R.; Sturges, W.T.; Gohar, L.K.; Shine, K.P.; Martinerie, P.; Oram, D.E.; Humphrey, S.P.; Begley, P.; Gunn, L.; Barnola, J.M.; Schwander, J.; Mulvaney, R. Atmospheric trends and radiative forcings of CF4 and C2F6 inferred from firn air. Environ. Sci. Technol. 2007, 41, 2184-2189.
[12] IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. PFC emissions from primary aluminium production. Page 200
[13] International Aluminium Institute(IAI), International Aluminium Industry's Perfluorocarbon Gas Emissions Reduction Programme, Result of the 2005 Anode Effect Survey, 2007.
[14] International Magnesium Association's, Primary Magnesium Production 2006.
[15] US EPA, the International Magnesium Association (IMA), China Magnesium Association (CMA), and Japan Magnesium Association (JMA), The Alternatives to SF6 for Magnesium Melt Protection, 2006.
[16] US EPA, http://www.epa.gov/magnesium-sf6/accomplishments.html
[17] 李灝銘, 全氟化物溫室效應氣體減量技術評析, 2006.
[18] Washington, D.C.; London, U.K.; Protocol for Measurement of tetrafluoromethane(CF4) and Hexafluoroethane(C2F6) Emission from Primary Aluminum Production, 2003
[19] Zazzera, L.; Reagen, W.; Cheng, A.; Infrared study of process emissions during C3F8/O2 plasma cleaning of plasma enhanced chemical vapor deposition chambers. J. frlectrocflem. Soc. 1997, 144, 3597~3601.
[20] Wofford, B.A.; Jackson, M.W.; Hartz, C.; Bevan, J.W. Surface wave plasma abatement of CHF3 and CF4 containing semiconductor process emissions. Environ. Sci. Technol. 1999, 33(11), 1892-1897.
[21] Clemons, C.A.; Altshuller, A.P. Responses of electron-capture detector to halogenated substances. Anal. Chem. 1966, 38(1), 133-136.
[22]National Oceanic and Atmospheric Administration (NOAA),
http://www.esrl.noaa.gov/gmd/hats/insitu/insitu.html
[23] Bright, R.N.; Matula, R.A. Gas chromatographic separation of low molecular weight fluorocarbons. J. Chromatogr. 1968, 35, 217~222.
[24] Rogers, R.; Born, G.; Kessler, W.; Christian, J. Pyrolysis-gas chromatography of perfluoro-n-pentane. Anal. Chem. 1973, 45(3), 567-570.
[25] Andrawes, F.F.; Gibson, E.K.; Bafus, D.A.; Analysis of low molecular weight perfluoroalkanes by gas chromatography with helium ionization detection. Anal. Chem. 1980, 52(8), 1377-1379.
[26] Harnisch, J.; Borchers, R.; Fabian, P.; Maiss, M. Tropospheric trends for CF4 and C2F6 since 1982 derived from SF6 dated stratospheric air. Geophys. Res. Lett. 1996, 23, 1099-1102.
[27] Wang, J.L.; Kuo, S.R.; Ma, S.S.; Chen, T.T. Construction of a low-cost automated chromatographic system for measurement of ambient methane Anal. Chem. Acta., 2001,448, 187-193.
CO:
[1] Smith, K.R. Biofuels, air pollution, and health: a global review. Kluwer Academic Pub, 1987.
[2] U.S. Environmental Protection Agency , http://www.epa.gov/air/urbanair/6poll.html
[3] NOAA/ESRL/GMD, http://www.esrl.noaa.gov/gmd/ccgg/
[4] Fishman, J.; Seiler, W. Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget. J. Geophys. Res. 1983, 88, 3662-3670.
[5] Cicerone, R.J. How has the Atmospheric Concentration of CO changed? The Changing Atmosphere, edited by F.S. Rowland and I.S.A. Isaksen, 49-61, 1988.
[6] Seinfeld, J.H., Atmospheric chemistry and physics of air pollution, 1986.
[7] http://web.eos.ucar.edu/mopitt/
[8] Edwards, D.P.; Pe´tron, G.; Novelli, P.C.; Emmons, L.K.; Gille, J.C.; Drummond, J.R. Southern Hemisphere carbon monoxide interannual variability observed by Terra/Measurement of Pollution in the Troposphere (MOPITT). J. Geophys. Res. 2006, 111, 1~9.
[9] Levy, H. Normal atmosphere: Large radical and formaldehyde predicted, Science 1971, 173, 141-143.
[10] Logan, J.A.; Prather, M.J.; Wofsy, S.C.; McElroy, M.B. Tropospheric chemistry: A global perspective. J. Geophys. Res. 1981, 86, 7210-7254.
[11] Thompson, A.M. The oxidizing capacity of the earth’s atmosphere: Probable past and future changes. Science 1992, 256, 1157-1165.
[12] Cassidy, D.T.; Reid, J. Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 1982, 21, 1185-1190.
[13] Sachse, G.W.; Hill, G.F. Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique. J. Geophys. Res. 1987, 92, 2071-2081.
[14] NIEA, 空氣中一氧化碳自動檢驗方法, 環署檢字第43007 號公告, 1992.
[15] Smith, R.N.; Swinehart, J.; Lesnini, D.G. Chromatographic analysis of gas mixtures containing nitrogen, nitrous oxide, nitric oxide, carbon monoxide, and carbon dioxide. Anal. Chem. 1958, 30, 1217-1218.
[16] Porter, K.; Volman, D.H. Flame ionization detection of carbon monoxide for gas chromatographic analysis. Anal. Chem. 1962, 34, 748-749.
[17] McCullough, J.D.; Crane, R.A.; Beckman, A.O. Detection of carbon monoxide in air by use of red mercuric oxide. Anal. Chem. 1947, 19, 999-1002.
[18] Novelli, P.C. An internally consistent set of globally distributed atmospheric carbon monoxide mixing ratios developed using results from an intercomparison of measurements. J. Geophys. Res., 1998, 103, 19285-19293.
[19] Volz, A.; Kley, D. A resonance-fluorescence instrument for the In-situ measurement of atmospheric carbon monoxide. Journal of Atmospheric Chemistry 1985, 2, 345~357.
[20] Gerbig, C.; Kley, D.; Volz-Thomas, A.; Kent, J.; Dewery, K.; McKenna, D.S. Fast response resonance fluorescence CO measurements aboard the C-130: instrument characterization and measurement made during North Atlantic Regional Experiment 1993. J. Geophys. Res. 1996, 101, 29229~29238.
[21] Gerbig, C.; Schmitgen, S.; Kley, D.; Volz-Thomas, A.; Dewey, K.; Haaks, D. An improved fast-response vacuum-UV resonance fluorescence CO instrument, J. Geophys. Res. 1999, 104, 1699~1704.
[22] Takegawa, N.; Kita, K.; Kondo, Y.; Matsumi, Y.; Parrish, D.D.; Holloway, J.S.; Koike, M.; Miyazaki, Y.; Toriyama, N.; Kawakami, S.; Ogawa, T. Airborne vacuum ultraviolet resonance fluorescence instrument for in situ measurement of CO. J. Geophys. Res. 2001, 106, 24237~24244.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明