博碩士論文 952203002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.149.233.188
姓名 劉柏均(Po-Chun Liu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 磺酸化聚二醚酮改質馬來醯亞胺樹枝狀結構半穿透質子交換膜
(Proton exchange membrane materials bearing semi-IPN structure:Sulfonated poly(ether etherketone) / Bismaleimide hyperbranch)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之高性能的質子半透膜的薄膜材料設計概念主要建構semi-IPN(interpenetrating polymer network)系統的結構之上,亦即將所得到的具高支鏈結構(hyper branch architecture)雙馬來醯亞胺寡合物(bismaleimide oligomer;mBMI)導入磺酸化聚二醚酮高分子(sPEEK)中,並進行雙馬來醯亞胺寡合物的加熱化學交聯(thermochemical crosslinking),築構成半互穿網路聚合物?semi-IPN(interpenetrating polymer network)?結構。本研究顯示,mBMI在180度高溫經過不同時間處理後可以形成較完整的交聯結構,因此複合高分子半透膜不僅展現較好的熱穩定性外,而且mBMI樹枝結構狀的存在可以有效降低半透膜的膨潤性,還能有效的提高薄膜的保水能力,使得這些複合薄膜在較高溫度下,還得以維持導電度。含有不同濃度的 mBMI(98)(mBMI:BMI=98:2)的高分子薄膜在高溫下其導電度仍維持一定水平,不因為高溫(<100oC)失散水分使導電度急速下降。但利用變溫導電度發現mBMI(30)會在超過100oC還能維持導電度。而純的sPEEK在超過85oC,導電度則會往下掉落,而且薄膜會因為高溫吸水而漸漸被溶解掉。
sPEEK在高溫(180oC)之下,會有些結構上的變化,苯環之間的π-π stacking和磺酸根彼此互相交聯。在加入了mBMI,在高溫180oC之下會產生熱交聯現象,mBMI也有些π-π stacking作用力。這兩者不同hyperbranch程度的高分子因為結構上的差異,對於sPEEK也會有不同作用力,使得薄膜系統的離子導電度不同。藉由water uptake、AC impendence、IEC、NMR、FL、DSC、TGA、DMA、methanol permeability、SEM去分析sPEEK/mBMI這系統的一些特性。
要瞭解薄膜水分的特性,由控制濕度儀和AC impendence結合在一起,控制濕度和導電度的關係。從吸附水分實驗知道sPEEK/mBMI的吸附水分的能力是否為高溫保住水分的關鍵。從定溫變濕度實驗顯示是否能在低濕度傳導質子。從定濕度變溫實驗可以瞭解薄膜的活化能,不同濕度的質子傳導的難易度。
此外,固態NMR的數據也顯示,複合薄膜在高溫下至少還有2~3個水分子被保留,而這些水分子是存在於sPEEK的磺酸根和mBMI分子之間並用來傳遞質子。而形成hyperbranch結構愈完整,愈有利於高溫時的薄膜保水性。
摘要(英) Present work disclosed a new design of proton exchange membrane for fuel cell employing the semi-IPN (interpenetrating network) structure established between hyper branched bismaleimide oligomer and the Sulfonated poly(ether ether ketones) sPEEKs.
Numerous advantages in operating the fuel cell at elevated temperature can be identified; however the membrane proton conductivity decreases substantially due to the loss of water at temperature near 100 oC. The semi-IPN membrane forms highly durable membrane with fair high temperature conductivity. Variable temperature proton conductivity over broad temperature range (20oC to 140oC) under different moisture conditions shows the semi-IPN structure is more effective in retaining water at these temperatures and successfully preserved the proton conductivity. The physical and conductivity properties of the semi-IPN membrane depend on (a) the degree of hyper branch and content of the mBMI in the membranes, (b) the conditions of the temperature program during curing the membrane. Present study examines in detail the correlation between the semi-IPN micro structure and these physical properties especially the proton conductivity. In addition, detailed proton conducting mechanisms in these semi-IPN structured membranes will be demonstrated by solid state NMR.
In order to develops an excellent proton conducting membrane, we proposed a semi-IPN (interpenetrating network) structure established between hyper branched architecture of bismaleimide oligomer and the architecture matrix sulfonated poly(ether ether ketone) (sPEEK). By using an in-situ polymerization scheme, where bismaleimide oligomers and bismaleimide monomers forms IPN structure within the sPEEK polymer matrix, the thermal polymerization of the bismaleimide oligomers and the film formation can be performed simultaneously. With increasing the reaction temperature and time, BMI monomer and mBMI (modified Bismaleimide oligomers) forms a more complete hyper branched network structure within the polymer solution. As a results, sPEEK polymer chain interpenetrates into hyper branch structure to form a semi-IPN structure. The physical and ion conductivity properties of the semi-IPN membrane depend on (a) the degree of hyper branch and content of the mBMI in the membranes, and (b) the conditions of the temperature program during casting membrane. Proton conducting mechanisms in the IPN membranes is also important. The methanol permeability of sPEEK/mBMI membrane is found to be effectively reduced in high concentration 50vol% methanol solution compared with Nafion 117 membrane. And the proton conductivity of most membranes is above 1.43×10-2 S/cm at ambient temperatures
關鍵字(中) ★ 燃料電池
★ 半互穿網路聚合物
★ 雙馬來醯亞胺
★ 高溫質子交換膜
關鍵字(英) ★ semi-IPN
★ hyperbranch
★ mBMI
論文目次 中文摘要 ------------------------------------------i
英文摘要 ------------------------------------------iii
謝誌 ------------------------------------------vi
目錄 ------------------------------------------vii
表目錄 ------------------------------------------x
圖目錄 ------------------------------------------xi
第一章 緒論
1-1前言 ------------------------------------------1
1-2直接甲醇燃料電池簡介 --------------------------3
1-3 離子交換薄膜的種類 --------------------------4
1-4 高支鏈結構(hyperbranch)高分子的特性 ----------8
1-5研究的動機 ------------------------------------9
第二章 文獻回顧
2-1 Semi-IPN系統介紹 -----------------------------11
2-2 semi-IPN的形成:不同設計的理念 ---------------12
2-3 Semi-IPN系統的機械強度和抗澎潤性質 -----------17
2-4 Semi-IPN系統吸脫附的動力學 -------------------20
2-5 Semi-IPN系統運用在燃料電池上面 ---------------25
2-6 第二章參考文獻 -------------------------------29
第三章 實驗操作
3-1樣品製備與實驗步驟
3-1-1 PEEK的磺酸化 -------------------------------31
3-1-2 mBMI(modified bismaleimide)的聚合 ----------31
3-1-3交聯型固態高分子電解質薄膜之製備 ------------32
3-2實驗量測與樣品前處理步驟 ----------------------32
3-3 實驗藥品 -------------------------------------40
第四章 結果與討論
4-1 sPEEK與mBMI的性質與鑑定 ----------------------43
4-1-1 sPEEK的性質 ----------------------45
4-1-2 核磁共振光譜儀(NMR)分析 -----------46
4-1-3 sPEEK和mBMI之分子模型圖 -----------50
4-2 Semi-IPN系統高分子電解質薄膜結構討論 ----------52
4-2-1 傅立葉紅外線光譜儀(FT-IR) ---------53
4-2-2小角度繞射X光(SAXS) ----------------54
4-2-3 離子交換容量(IEC) -----------------55
4-2-4 微差掃瞄熱卡計(DSC) ---------------57
4-2-5 熱重分析儀分析(TGA) ---------------60
4-2-6 動態黏彈性分析儀(DMA) -------------62
4-2-7 穿隧式電子顯微鏡(TEM)和掃瞄式顯微鏡(SEM)-
-----------------------------------------67
4-2-8 薄膜結構之結構圖 ------------------69
4-3 Semi-IPN高分子薄膜質子傳遞行為
4-3-1水分子與氫鍵作用 -----------------76
4-3-2水分攝取度和溫度 -----------------77
4-3-3 水分和導電度的關係 --------------80
4-3-4 水分攝取度和酸鹼度的關係 --------81
4-3-5 甲醇滲透率 ----------------------82
4-3-6 固態核磁共振儀與水的訊號 --------84
4-3-7濕度控制模組(Humidifier Module)的導電度
4-3-7-1 水分吸脫附的實驗 ------------90
4-3-7-2 定溫變濕度導電度 ------------93
4-3-7-3 定濕度變溫導電度 ------------93
4-3-8 水分傳導模型 -------------------99
第五章 結論與未來展望 ---------------------------101
第六章 參考文獻 ---------------------------------104
參考文獻 1. 林資隆,γ-PGA高分子水膠的化工製程與開發應用,
雲林科技大學碩士班論文, 2007
2. I.Gitsov,C.Zhu; J. AM. CHEM. SOC. 2003, 125, 11228-11234
3. Y. Zhang, F. Wu , M.Z Li, E. Wang ; Polymer 2005, 46, 7695–7700
4. S.K. Siddhanta, R.Gangopadhyay; Polymer 2005, 46, 2993–3000
5. G. Rohman, D.Grande,F.o.Laupreˆtre, S. Boileau, P. Gue´rin ; Macromolecules 2005, 38, 7274-7285
6. R.Q Fua, J.J Woo, S.J Seo, J.S Lee, S.H Moon;
Journal of Power Sources 2008, 179, 458–466
7. Shefali Mishra ,R.Bajpai, R.Katare ,A. K. Bajpai; Microsyst Technol 2008, 141, 93–198
8. Siddaramaiah, F.L.Barcia, Alex S.S, C.M.Paranhos, B.G. Soares; Appl Polym Sci 2007, 106, 3808–3815
9. S.Lee, W.Jang, S.Choi, K.Tharanikkarasu,Y. Shul, H.Han
J Appl Polym Sci 2007,104 , 2965–2972
10. 劉國基, 雙曲線擴散問題之探討, 成功大學機械工程博士班論文, 2002
11. 梁任秋, 熱傳導、質擴散與動量傳遞中瞬態碰撞效應,科學出版社, 北京, 1997
12. Camera-Roda, G. and Sarti, G, “ Mass transport with relaxation in polymer” AIChE.J,vol.36,pp.851-860,1990
13. Hayes, C.K. and Cohen, D., “The evolution of steep fronts in non-Fickian polymer-penetrant system,” J. Polymer Sci.:Part B:
Polymer Physics,vol.30 pp.145-161.1992
14. Edwards, D.A, “Non-Fickian diffusion in thin polymer films”,
J. Polymer Sci: Part B;Polymer Physics,vol.34.pp.981-997,1996
15. A.K. Bajpai, J. Bajpai, Sandeep Shukla;
Reactive & Functional Polymers 2001,50, 9–21
16. Jia Wei, Shimei Xu, Ronglan Wu, Jide Wang, Yi Gao ;
J Appl Polymer Sci, 2007, 103,345–350
17. T.Miyata, N.Asami, K.Okawa1, T.Uragami;
Polym. Adv. Technol, 2006,17, 794–797
18. S.J Kim,C.K Lee, Y.M Lee, Sun I. Kim;
J Appl Polym Sci 2003,90,3032–3036,
19. J.Qiao , S.Ikesaka , M. Saito , J. Kuwano, T. Okada; Electrochemistry Communications 2007,9,1945–1950
20. J. Seo, Wonbong Jang, Seokkyu Lee, Haksoo Han
Polymer Degradation and Stability 2008, 93,298-304
21. C.W. Lin , Y.F. Huanga, A.M. Kannan;
Journal of Power Sources 2007, 164, 449–456
22. P.P. Kundu , B. T Kim, J.E Ahn, H.S Han, Y.G Shul;
Journal of Power Sources 2007, 171 ,86–91
23. K.YCho, H.Y Jung, S.S Shin, N.S Choi, S.J Sung, J.K Park, J.H Choi, K.W Park, Y.E Sung; Electrochimica Acta, 2004 ,50,589–593
24. Y. Woo, S.Y. Oh, Y.S. Kang, B. Jung, J. Membr. Sci. 2003,220 , 31.
25. B.S. Pivovar, Y. Wang, E.L. Cussler, J. Membr. Sci. 1999,154, 155.
26. P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, J. Membr. Sci. 2004,229, 95.
27. C. Gouri, C.P. Reghunadhan Nair, R. Ramaswamy, K.N. Ninan, European Polymer Journal 2002,38, 503.
28. J.P. Pan, G.Y. Shiau, S.S. Lin, K.M. Chen,
J. Appl. Polym. Sci. 1992,45, 103.
29. J. Qiao, T. Hamaya, T. Okada, Chem. Mater. 2005,17, 2413.
30. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, J. S. Kim,
J. Power Sources 2002,106, 173.
31 .J. Devaux, D. Delimoy, D. Dqoust, R. Legras, J.P. Mercier, C. Strazielle, E. Nield, Polymer 1985,26,1994.
指導教授 諸柏仁(Peter Po-Jen Chu) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明